Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of oxygen implantation on microstructural and optical properties of ZnTe:O intermediate-band photovoltaic materials

Zhen Kang Gu Ran Ye Jian-Dong Gu Shu-Lin Ren Fang-Fang Zhu Shun-Ming Huang Shi-Min Tang Kun Tang Dong-Ming Yang Yi Zhang Rong Zheng You-Dou

Citation:

Effect of oxygen implantation on microstructural and optical properties of ZnTe:O intermediate-band photovoltaic materials

Zhen Kang, Gu Ran, Ye Jian-Dong, Gu Shu-Lin, Ren Fang-Fang, Zhu Shun-Ming, Huang Shi-Min, Tang Kun, Tang Dong-Ming, Yang Yi, Zhang Rong, Zheng You-Dou
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Group Ⅱ-VI and Ⅲ-V highly mismatched alloys are promising material systems in the application of high efficiency intermediate-band solar cell (IBSC), however, the key issues including band engineering of intermediate band still remain challenging. In this study, ZnTe:O alloys have been produced by isoelectric oxygen implantation into ZnTe single crystal, and the influences of implantation on the microstructural and optical properties of ZnTe:O have been investigated in detail. It is found that a proper dose of oxygen ions can lead to a compressive strain in the lattice and induce the formation of intermediate band located on the energy level of ~ 0.45 eV below the conduction band. While a high dose of oxygen ions causes ZnTe surface layer to become amorphous and enhances the deep level emission around 1.6 eV, which is related to Zn vacancies. Results of resonant Raman and time-resolved photoluminescence spectra indicate that implantation induced intermediate band is related to the localized exciton emission bound to oxygen isoelectric trap, and the associated photo excited carriers have a relatively long decay time. This suggests that the reduction of lattice distortion and alloy disorder may be needed for converting localized states of the intermediate band into extended states, which is crucial to realize high efficiency ZnTe:O based IBSCs.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2011CB302003), the National Natural Science Foundation of China (Grant Nos. 61025020, 60990312, 61274058, 61322403, 61271077, 11104130, 11104134), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK2011437, BK2011556, BK20130013), the Priority Academic Development Program of Higher Education Institutions of Jiangsu Province, China, and the Australian Research Council Discovery Project (Grant No. DP1096918).
    [1]

    Luque A, Marti A 1997 Phys. Rev. Lett. 78 5514

    [2]

    Luque A, Marti A, Stanley C 2012 Nat. Photon. 6 146

    [3]

    Luque A, Marti A 2011 Nat. Photon. 5 137

    [4]

    Walukiewicz W, Shan W, Yu K M, Ager Ⅲ J W, Haller E E, Miotkowski I, Seong M J, Alawadhi H, Eamdas A K 2000 Phys. Rev. Lett. 85 1552

    [5]

    Wu J, Walukiewicz W, Yu K M, Ager Ⅲ J W, Haller E E, Hong Y G, Xin H P, Tu C W 2002 Phys. Rev. B 65 241303

    [6]

    Yu K M, Walukiewicz W, Wu J, Shan W, Beeman J W, Scarpulla M A, Dubon O D, Becla P 2003 Phys. Rev. Lett. 91 246403

    [7]

    Wang W M, Alvwer S L, varPhillips J D 2009 Appl. Phys. Lett. 95 011103

    [8]

    Wu K P, Gu S L, Ye J D, Tang K, Zhu S M, Zhou M R, Huang Y R, Zhang R, Zheng Y D 2013 Chin. Phys. B 22 107103

    [9]

    Wang W M, Alvwer S L, varPhillips J D, Metzger W K 2009 Appl. Phys. Lett. 95 261107

    [10]

    Seong M J, Miotkowski I, Ramdas A K 1998 Phys. Rev. B 58 7734

    [11]

    Hopfield J J, Thomas D G, Lynch R T 1966 Phys. Rev. Lett. 17 312

    [12]

    Felici M, Polimeni A, Capizzi M, Nabetani Y, Okuno T, Aoki K, Kato T, Matsumoto T, Hirai T 2006 Appl. Phys. Lett. 88 101910

    [13]

    Moon S R, Kim J H, Kim Y 2012 J. Phys. Chem. C 116 10368

    [14]

    Tanaka T, Miyabara M, Nagao Y, Saito K, Guo Q, Nishio M, Yu K M, Walukiewicz W 2013 Appl. Phys. Lett. 102 052111

    [15]

    Cuthbert D, Thomas D G 1967 Phys. Rev. 154 763

    [16]

    Pak S W, Suh J Y, Lee D U, Kim E K 2012 Jpn. J. Appl. Phys. 51 01AD04

    [17]

    Merz J L 1971 J. Appl. Phys. 42 2463

    [18]

    Yu K M, Walukiewicz W, Wu J, Beeman J W, Ager Ⅲ J W, Haller E E, Miotkowski I, Ramdas A K, Becla P 2002 Appl. Phys. Lett. 80 1571

    [19]

    Pine A S, Dresselh G 1971 Phys. Rev. B 4 356

    [20]

    Zhang Q, Zhang J, Utama M, Peng B, Mata M, Arbiol J, Xiong Q H 2012 Phys. Rev. B 85 085418

    [21]

    Larramendi E M, Berth G, Wiedemeier V, Husch K P, Zrenner A, Woggon U, Tschumak E, Lischka K, Schikora D 2010 Semicond. Sci. Technol. 25 075003

    [22]

    Ye J D, Tripathy S, Ren F F, Sun X W, Lo G Q, Teo K L 2009 Appl. Phys. Lett. 94 011913

    [23]

    Schmidt R L, Mccombe B D, Cardona M 1975 Phys. Rev. B 11 746

    [24]

    Wang R P, Xu G, Jin P 2004 Phys. Rev. B 69 113303

    [25]

    Sato K, Adachi S 1993 J. Appl. Phys. 73 926

    [26]

    Yu Y M, Nam S G, Lee K S, Choi Y D, Byungsung O 2001 J. Appl. Phys. 90 807

    [27]

    Biao Y, Azoulay, George M A, Burger A, Collins W E, Silberman E, Su C H, Volz M E, Szofran F R, Gillies D C 1994 J. Cryst. Growth 138 219

    [28]

    Norris C B 1982 J. Appl. Phys. 53 5172

    [29]

    Norris C B 1980 J. Appl. Phys. 51 1998

    [30]

    Shigaura G, Ohashi M, Ichinohe Y, Kamamori M, Kimura Na, Kimura No, Sawada T, Suzuki K, Imai K 2007 J. Cryst. Growth 301–302 297

    [31]

    Wei S H, Zhang S B 2002 Phys. Rev. B 66 155211

    [32]

    Carvalho A, Oberg S, Briddon P R 2011 Thin Solid Films 519 7468

    [33]

    Holst J C, Hoffmann A, Rudloff D, Bertram F, Riemann T, Christen J, Frey T, As D J, Schikora D, Lischka K 2000 Appl. Phys. Lett. 76 2832

    [34]

    Bartel T, Dworzak M, Strassburg M, Hoffmann A, Strittmatter A, Bimberg D 2004 Appl. Phys. Lett. 85 1946

  • [1]

    Luque A, Marti A 1997 Phys. Rev. Lett. 78 5514

    [2]

    Luque A, Marti A, Stanley C 2012 Nat. Photon. 6 146

    [3]

    Luque A, Marti A 2011 Nat. Photon. 5 137

    [4]

    Walukiewicz W, Shan W, Yu K M, Ager Ⅲ J W, Haller E E, Miotkowski I, Seong M J, Alawadhi H, Eamdas A K 2000 Phys. Rev. Lett. 85 1552

    [5]

    Wu J, Walukiewicz W, Yu K M, Ager Ⅲ J W, Haller E E, Hong Y G, Xin H P, Tu C W 2002 Phys. Rev. B 65 241303

    [6]

    Yu K M, Walukiewicz W, Wu J, Shan W, Beeman J W, Scarpulla M A, Dubon O D, Becla P 2003 Phys. Rev. Lett. 91 246403

    [7]

    Wang W M, Alvwer S L, varPhillips J D 2009 Appl. Phys. Lett. 95 011103

    [8]

    Wu K P, Gu S L, Ye J D, Tang K, Zhu S M, Zhou M R, Huang Y R, Zhang R, Zheng Y D 2013 Chin. Phys. B 22 107103

    [9]

    Wang W M, Alvwer S L, varPhillips J D, Metzger W K 2009 Appl. Phys. Lett. 95 261107

    [10]

    Seong M J, Miotkowski I, Ramdas A K 1998 Phys. Rev. B 58 7734

    [11]

    Hopfield J J, Thomas D G, Lynch R T 1966 Phys. Rev. Lett. 17 312

    [12]

    Felici M, Polimeni A, Capizzi M, Nabetani Y, Okuno T, Aoki K, Kato T, Matsumoto T, Hirai T 2006 Appl. Phys. Lett. 88 101910

    [13]

    Moon S R, Kim J H, Kim Y 2012 J. Phys. Chem. C 116 10368

    [14]

    Tanaka T, Miyabara M, Nagao Y, Saito K, Guo Q, Nishio M, Yu K M, Walukiewicz W 2013 Appl. Phys. Lett. 102 052111

    [15]

    Cuthbert D, Thomas D G 1967 Phys. Rev. 154 763

    [16]

    Pak S W, Suh J Y, Lee D U, Kim E K 2012 Jpn. J. Appl. Phys. 51 01AD04

    [17]

    Merz J L 1971 J. Appl. Phys. 42 2463

    [18]

    Yu K M, Walukiewicz W, Wu J, Beeman J W, Ager Ⅲ J W, Haller E E, Miotkowski I, Ramdas A K, Becla P 2002 Appl. Phys. Lett. 80 1571

    [19]

    Pine A S, Dresselh G 1971 Phys. Rev. B 4 356

    [20]

    Zhang Q, Zhang J, Utama M, Peng B, Mata M, Arbiol J, Xiong Q H 2012 Phys. Rev. B 85 085418

    [21]

    Larramendi E M, Berth G, Wiedemeier V, Husch K P, Zrenner A, Woggon U, Tschumak E, Lischka K, Schikora D 2010 Semicond. Sci. Technol. 25 075003

    [22]

    Ye J D, Tripathy S, Ren F F, Sun X W, Lo G Q, Teo K L 2009 Appl. Phys. Lett. 94 011913

    [23]

    Schmidt R L, Mccombe B D, Cardona M 1975 Phys. Rev. B 11 746

    [24]

    Wang R P, Xu G, Jin P 2004 Phys. Rev. B 69 113303

    [25]

    Sato K, Adachi S 1993 J. Appl. Phys. 73 926

    [26]

    Yu Y M, Nam S G, Lee K S, Choi Y D, Byungsung O 2001 J. Appl. Phys. 90 807

    [27]

    Biao Y, Azoulay, George M A, Burger A, Collins W E, Silberman E, Su C H, Volz M E, Szofran F R, Gillies D C 1994 J. Cryst. Growth 138 219

    [28]

    Norris C B 1982 J. Appl. Phys. 53 5172

    [29]

    Norris C B 1980 J. Appl. Phys. 51 1998

    [30]

    Shigaura G, Ohashi M, Ichinohe Y, Kamamori M, Kimura Na, Kimura No, Sawada T, Suzuki K, Imai K 2007 J. Cryst. Growth 301–302 297

    [31]

    Wei S H, Zhang S B 2002 Phys. Rev. B 66 155211

    [32]

    Carvalho A, Oberg S, Briddon P R 2011 Thin Solid Films 519 7468

    [33]

    Holst J C, Hoffmann A, Rudloff D, Bertram F, Riemann T, Christen J, Frey T, As D J, Schikora D, Lischka K 2000 Appl. Phys. Lett. 76 2832

    [34]

    Bartel T, Dworzak M, Strassburg M, Hoffmann A, Strittmatter A, Bimberg D 2004 Appl. Phys. Lett. 85 1946

  • [1] Yu Sen, Xu Sheng-Rui, Tao Hong-Chang, Wang Hai-Tao, An Xia, Yang He, Xu Kang, Zhang Jin-Cheng, Hao Yue. Ion implantation induced nucleation and epitaxial growth of high-quality AlN. Acta Physica Sinica, 2024, 73(19): 196101. doi: 10.7498/aps.73.20240674
    [2] Zhu He, Zhang Bing-Po, Wang Miao, Hu Gu-Jin, Dai Ning, Wu Hui-Zhen. Influence of high dose As ion implantation on electrical properties of high resistivity silicon. Acta Physica Sinica, 2014, 63(13): 136803. doi: 10.7498/aps.63.136803
    [3] Yang Tian-Yong, Kong Chun-Yang, Ruan Hai-Bo, Qin Guo-Ping, Li Wan-Jun, Liang Wei-Wei, Meng Xiang-Dan, Zhao Yong-Hong, Fang Liang, Cui Yu-Ting. Study on the p-type conductivities and Raman scattering properties of N+ ion-implanted O-rich ZnO thin films. Acta Physica Sinica, 2013, 62(3): 037703. doi: 10.7498/aps.62.037703
    [4] Qin Xi-Feng, Liang Yi, Wang Feng-Xiang, Li Shuang, Fu Gang, Ji Yan-Ju. Range and annealing behavior of Er ions implanted in SiC. Acta Physica Sinica, 2011, 60(6): 066101. doi: 10.7498/aps.60.066101
    [5] Pan Feng, Ding Bin-Feng, Fa Tao, Cheng Feng-Feng, Zhou Sheng-Qiang, Yao Shu-De. Superparamagnetic nanoparticles formed in Fe-implanted ZnO. Acta Physica Sinica, 2011, 60(10): 108501. doi: 10.7498/aps.60.108501
    [6] Qin Xi-Feng, Wang Feng-Xiang, Liang Yi, Fu Gang, Zhao You-Mei. Investigation of the lateral spread of Er ions implanted in 6H-SiC. Acta Physica Sinica, 2010, 59(9): 6390-6393. doi: 10.7498/aps.59.6390
    [7] Liu Xian-Ming, Li Bin-Cheng, Gao Wei-Dong, Han Yan-Ling. Infrared spectroscopic ellipsometry studies of ion-implanted and annealed silicon wafers. Acta Physica Sinica, 2010, 59(3): 1632-1637. doi: 10.7498/aps.59.1632
    [8] Zhang Da-Cheng, Shen Yan-Yan, Huang Yuan-Jie, Wang Zhuo, Liu Chang-Long. Theoretical study of nanoparticles in insulators fabricated by metal ion implantation. Acta Physica Sinica, 2010, 59(11): 7974-7978. doi: 10.7498/aps.59.7974
    [9] Su Hai-Qiao, Xue Shu-Wen, Chen Meng, Li Zhi-Jie, Yuan Zhao-Lin, Fu Yu-Jun, Zu Xiao-Tao. Effects of Ti ion implantation and post-thermal annealing on the structural and optical properties of ZnS films. Acta Physica Sinica, 2009, 58(10): 7108-7113. doi: 10.7498/aps.58.7108
    [10] Yang Yi-Tao, Zhang Chong-Hong, Zhou Li-Hong, Li Bing-Sheng, Zhang Li-Qing. Synthesis of metallic nanoparticles in spinel via defects induced by the inert-gas-ion implantation. Acta Physica Sinica, 2009, 58(1): 399-403. doi: 10.7498/aps.58.399
    [11] Yang Yi-Tao, Zhang Chong-Hong, Zhou Li-Hong, Li Bing-Sheng. A study of damage evolution during annealing of helium-implanted magnesium-aluminate spinel. Acta Physica Sinica, 2008, 57(8): 5165-5169. doi: 10.7498/aps.57.5165
    [12] Hu Liang-Jun, Chen Yong-Hai, Ye Xiao-Ling, Wang Zhan-Guo. Electrical and optical properties of InAs/GaAs quantum dots doped by high energy Mn implantation. Acta Physica Sinica, 2007, 56(8): 4930-4935. doi: 10.7498/aps.56.4930
    [13] Chen Zhi-Quan, Kawasuso Atsuo. Vacancy-type defects induced by He-implantation in ZnO studied by a slow positron beam. Acta Physica Sinica, 2006, 55(8): 4353-4357. doi: 10.7498/aps.55.4353
    [14] Zhang Xiao-Dong, Lin De-Xu, Li Gong-Ping, You Wei, Zhang Li-Min, Zhang Yu, Liu Zheng-Min. Broadband yellow luminescence in the photoluminescence spectra of n-GaN implanted by the different ions. Acta Physica Sinica, 2006, 55(10): 5487-5493. doi: 10.7498/aps.55.5487
    [15] Zhong Hong-Mei, Chen Xiao-Shuang, Wang Jin-Bin, Xia Chang-Sheng, Wang Shao-Wei, Li Zhi-Feng, Xu Wen-Lan, Lu Wei. Preparation of ZnMnO by ion implantation and its spectral characterization. Acta Physica Sinica, 2006, 55(4): 2073-2077. doi: 10.7498/aps.55.2073
    [16] Wang Xiu-Ying, Gao Ming, Sun Li-Ling, Liu Ri-Ping, Zhang Jun, Wang Wen-Kui. Diffusion of implanted Mo in Zr57Nb5Cu15.4Ni12.6Al10 non-crystalline alloy. Acta Physica Sinica, 2004, 53(1): 200-203. doi: 10.7498/aps.53.200
    [17] Zhang Ji-Cai, Dai Lun, Qin Guo-Gang, Ying Li-Zhen, Zhao Xin-Sheng. . Acta Physica Sinica, 2002, 51(3): 629-634. doi: 10.7498/aps.51.629
    [18] Liu Xue-Qin, Wang Yin-Yue, Zhen Cong-Mian, Zhang Jing, Yang Ying-Hu, Guo Yong-Ping. . Acta Physica Sinica, 2002, 51(10): 2340-2343. doi: 10.7498/aps.51.2340
    [19] WANG YIN-SHU, LI JIN-MIN, WANG YAN-BIN, WANG YU-TIAN, SUN GUO-SHENG, LIN LAN-YING. THE EFFECTS OF PRE-IRRADIATION ON THE FORMATION OF Si1-xCx ALLOYS. Acta Physica Sinica, 2001, 50(7): 1329-1333. doi: 10.7498/aps.50.1329
    [20] WANG YIN-SHU, LI JIN-MIN, JIN YUN-FAN, WANG YU-TIAN, LIN LAN-YING. THE FORMATION AND CHARACTERISTICS OF Si1-xCx ALLOYS IN Si CRYSTALS BY MEANS OF IMPLANTATION OF CIONS WITH DIFFERENT DOSES. Acta Physica Sinica, 2000, 49(11): 2210-2213. doi: 10.7498/aps.49.2210
Metrics
  • Abstract views:  5624
  • PDF Downloads:  713
  • Cited By: 0
Publishing process
  • Received Date:  28 May 2014
  • Accepted Date:  24 July 2014
  • Published Online:  05 December 2014

/

返回文章
返回