-
Group Ⅱ-VI and Ⅲ-V highly mismatched alloys are promising material systems in the application of high efficiency intermediate-band solar cell (IBSC), however, the key issues including band engineering of intermediate band still remain challenging. In this study, ZnTe:O alloys have been produced by isoelectric oxygen implantation into ZnTe single crystal, and the influences of implantation on the microstructural and optical properties of ZnTe:O have been investigated in detail. It is found that a proper dose of oxygen ions can lead to a compressive strain in the lattice and induce the formation of intermediate band located on the energy level of ~ 0.45 eV below the conduction band. While a high dose of oxygen ions causes ZnTe surface layer to become amorphous and enhances the deep level emission around 1.6 eV, which is related to Zn vacancies. Results of resonant Raman and time-resolved photoluminescence spectra indicate that implantation induced intermediate band is related to the localized exciton emission bound to oxygen isoelectric trap, and the associated photo excited carriers have a relatively long decay time. This suggests that the reduction of lattice distortion and alloy disorder may be needed for converting localized states of the intermediate band into extended states, which is crucial to realize high efficiency ZnTe:O based IBSCs.
-
Keywords:
- intermediate band /
- ion implantation /
- highly mismatched alloys /
- group Ⅱ-VI semiconductors
[1] Luque A, Marti A 1997 Phys. Rev. Lett. 78 5514
[2] Luque A, Marti A, Stanley C 2012 Nat. Photon. 6 146
[3] Luque A, Marti A 2011 Nat. Photon. 5 137
[4] Walukiewicz W, Shan W, Yu K M, Ager Ⅲ J W, Haller E E, Miotkowski I, Seong M J, Alawadhi H, Eamdas A K 2000 Phys. Rev. Lett. 85 1552
[5] Wu J, Walukiewicz W, Yu K M, Ager Ⅲ J W, Haller E E, Hong Y G, Xin H P, Tu C W 2002 Phys. Rev. B 65 241303
[6] Yu K M, Walukiewicz W, Wu J, Shan W, Beeman J W, Scarpulla M A, Dubon O D, Becla P 2003 Phys. Rev. Lett. 91 246403
[7] Wang W M, Alvwer S L, varPhillips J D 2009 Appl. Phys. Lett. 95 011103
[8] Wu K P, Gu S L, Ye J D, Tang K, Zhu S M, Zhou M R, Huang Y R, Zhang R, Zheng Y D 2013 Chin. Phys. B 22 107103
[9] Wang W M, Alvwer S L, varPhillips J D, Metzger W K 2009 Appl. Phys. Lett. 95 261107
[10] Seong M J, Miotkowski I, Ramdas A K 1998 Phys. Rev. B 58 7734
[11] Hopfield J J, Thomas D G, Lynch R T 1966 Phys. Rev. Lett. 17 312
[12] Felici M, Polimeni A, Capizzi M, Nabetani Y, Okuno T, Aoki K, Kato T, Matsumoto T, Hirai T 2006 Appl. Phys. Lett. 88 101910
[13] Moon S R, Kim J H, Kim Y 2012 J. Phys. Chem. C 116 10368
[14] Tanaka T, Miyabara M, Nagao Y, Saito K, Guo Q, Nishio M, Yu K M, Walukiewicz W 2013 Appl. Phys. Lett. 102 052111
[15] Cuthbert D, Thomas D G 1967 Phys. Rev. 154 763
[16] Pak S W, Suh J Y, Lee D U, Kim E K 2012 Jpn. J. Appl. Phys. 51 01AD04
[17] Merz J L 1971 J. Appl. Phys. 42 2463
[18] Yu K M, Walukiewicz W, Wu J, Beeman J W, Ager Ⅲ J W, Haller E E, Miotkowski I, Ramdas A K, Becla P 2002 Appl. Phys. Lett. 80 1571
[19] Pine A S, Dresselh G 1971 Phys. Rev. B 4 356
[20] Zhang Q, Zhang J, Utama M, Peng B, Mata M, Arbiol J, Xiong Q H 2012 Phys. Rev. B 85 085418
[21] Larramendi E M, Berth G, Wiedemeier V, Husch K P, Zrenner A, Woggon U, Tschumak E, Lischka K, Schikora D 2010 Semicond. Sci. Technol. 25 075003
[22] Ye J D, Tripathy S, Ren F F, Sun X W, Lo G Q, Teo K L 2009 Appl. Phys. Lett. 94 011913
[23] Schmidt R L, Mccombe B D, Cardona M 1975 Phys. Rev. B 11 746
[24] Wang R P, Xu G, Jin P 2004 Phys. Rev. B 69 113303
[25] Sato K, Adachi S 1993 J. Appl. Phys. 73 926
[26] Yu Y M, Nam S G, Lee K S, Choi Y D, Byungsung O 2001 J. Appl. Phys. 90 807
[27] Biao Y, Azoulay, George M A, Burger A, Collins W E, Silberman E, Su C H, Volz M E, Szofran F R, Gillies D C 1994 J. Cryst. Growth 138 219
[28] Norris C B 1982 J. Appl. Phys. 53 5172
[29] Norris C B 1980 J. Appl. Phys. 51 1998
[30] Shigaura G, Ohashi M, Ichinohe Y, Kamamori M, Kimura Na, Kimura No, Sawada T, Suzuki K, Imai K 2007 J. Cryst. Growth 301–302 297
[31] Wei S H, Zhang S B 2002 Phys. Rev. B 66 155211
[32] Carvalho A, Oberg S, Briddon P R 2011 Thin Solid Films 519 7468
[33] Holst J C, Hoffmann A, Rudloff D, Bertram F, Riemann T, Christen J, Frey T, As D J, Schikora D, Lischka K 2000 Appl. Phys. Lett. 76 2832
[34] Bartel T, Dworzak M, Strassburg M, Hoffmann A, Strittmatter A, Bimberg D 2004 Appl. Phys. Lett. 85 1946
-
[1] Luque A, Marti A 1997 Phys. Rev. Lett. 78 5514
[2] Luque A, Marti A, Stanley C 2012 Nat. Photon. 6 146
[3] Luque A, Marti A 2011 Nat. Photon. 5 137
[4] Walukiewicz W, Shan W, Yu K M, Ager Ⅲ J W, Haller E E, Miotkowski I, Seong M J, Alawadhi H, Eamdas A K 2000 Phys. Rev. Lett. 85 1552
[5] Wu J, Walukiewicz W, Yu K M, Ager Ⅲ J W, Haller E E, Hong Y G, Xin H P, Tu C W 2002 Phys. Rev. B 65 241303
[6] Yu K M, Walukiewicz W, Wu J, Shan W, Beeman J W, Scarpulla M A, Dubon O D, Becla P 2003 Phys. Rev. Lett. 91 246403
[7] Wang W M, Alvwer S L, varPhillips J D 2009 Appl. Phys. Lett. 95 011103
[8] Wu K P, Gu S L, Ye J D, Tang K, Zhu S M, Zhou M R, Huang Y R, Zhang R, Zheng Y D 2013 Chin. Phys. B 22 107103
[9] Wang W M, Alvwer S L, varPhillips J D, Metzger W K 2009 Appl. Phys. Lett. 95 261107
[10] Seong M J, Miotkowski I, Ramdas A K 1998 Phys. Rev. B 58 7734
[11] Hopfield J J, Thomas D G, Lynch R T 1966 Phys. Rev. Lett. 17 312
[12] Felici M, Polimeni A, Capizzi M, Nabetani Y, Okuno T, Aoki K, Kato T, Matsumoto T, Hirai T 2006 Appl. Phys. Lett. 88 101910
[13] Moon S R, Kim J H, Kim Y 2012 J. Phys. Chem. C 116 10368
[14] Tanaka T, Miyabara M, Nagao Y, Saito K, Guo Q, Nishio M, Yu K M, Walukiewicz W 2013 Appl. Phys. Lett. 102 052111
[15] Cuthbert D, Thomas D G 1967 Phys. Rev. 154 763
[16] Pak S W, Suh J Y, Lee D U, Kim E K 2012 Jpn. J. Appl. Phys. 51 01AD04
[17] Merz J L 1971 J. Appl. Phys. 42 2463
[18] Yu K M, Walukiewicz W, Wu J, Beeman J W, Ager Ⅲ J W, Haller E E, Miotkowski I, Ramdas A K, Becla P 2002 Appl. Phys. Lett. 80 1571
[19] Pine A S, Dresselh G 1971 Phys. Rev. B 4 356
[20] Zhang Q, Zhang J, Utama M, Peng B, Mata M, Arbiol J, Xiong Q H 2012 Phys. Rev. B 85 085418
[21] Larramendi E M, Berth G, Wiedemeier V, Husch K P, Zrenner A, Woggon U, Tschumak E, Lischka K, Schikora D 2010 Semicond. Sci. Technol. 25 075003
[22] Ye J D, Tripathy S, Ren F F, Sun X W, Lo G Q, Teo K L 2009 Appl. Phys. Lett. 94 011913
[23] Schmidt R L, Mccombe B D, Cardona M 1975 Phys. Rev. B 11 746
[24] Wang R P, Xu G, Jin P 2004 Phys. Rev. B 69 113303
[25] Sato K, Adachi S 1993 J. Appl. Phys. 73 926
[26] Yu Y M, Nam S G, Lee K S, Choi Y D, Byungsung O 2001 J. Appl. Phys. 90 807
[27] Biao Y, Azoulay, George M A, Burger A, Collins W E, Silberman E, Su C H, Volz M E, Szofran F R, Gillies D C 1994 J. Cryst. Growth 138 219
[28] Norris C B 1982 J. Appl. Phys. 53 5172
[29] Norris C B 1980 J. Appl. Phys. 51 1998
[30] Shigaura G, Ohashi M, Ichinohe Y, Kamamori M, Kimura Na, Kimura No, Sawada T, Suzuki K, Imai K 2007 J. Cryst. Growth 301–302 297
[31] Wei S H, Zhang S B 2002 Phys. Rev. B 66 155211
[32] Carvalho A, Oberg S, Briddon P R 2011 Thin Solid Films 519 7468
[33] Holst J C, Hoffmann A, Rudloff D, Bertram F, Riemann T, Christen J, Frey T, As D J, Schikora D, Lischka K 2000 Appl. Phys. Lett. 76 2832
[34] Bartel T, Dworzak M, Strassburg M, Hoffmann A, Strittmatter A, Bimberg D 2004 Appl. Phys. Lett. 85 1946
Catalog
Metrics
- Abstract views: 5624
- PDF Downloads: 713
- Cited By: 0