-
Nanopore alumina films (PAF) are fabricated by two-step anodic oxidation of aluminum in oxalic acid. The field emission scanning electron microscope measurement reveals the surface microstructure of PAF, and the defect formation mechanism in PAF is analyzed. The energy dispersive X ray spectroscopy and the Fourier transform infrared spectroscopy results indicate that oxalic ions are incorporated into the PAF in the synthesis process and further heating up to 500 ℃ does not cause oxalic ions to completely decompose. The photoluminescence (PL) spectra of PAF can be divided into three bands by Gaussion fitting method. The measurement results and the defects in PAF show that the PL originate from optical transitions of two kinds of different oxygen-deficient defect centers (F and F+) and oxalic impurities related defect center, PL centered at 402, 433 and 475 nm, respectively. We put forward for the first time that F centers play a leading role. The PL characteristics of the PAF prepared in oxalic acids with different concentrations suggest that three kinds of the luminescent center positions do not change with the increase of the oxalic acid concentration, but their relative intensities change with the increase of the oxalic acid concentration, i.e., F and F+ decrease, oxalic impurities related defects increase, and these will cause the PL peak position to be red-shifted. Finally, we put forward that the oxalic impurities in PAF can be changed by controlling the concentration of oxalic acid. The present experiments and results will be beneficial to the understanding of light-emitting mechanism in PAF, meanwhile, in this paper we propose a new train of thought for PAF preparation application.
-
Keywords:
- pore alumina film /
- luminescent center /
- defect mechanism /
- impurities control
[1] Keller F, Hunter M S, Robinson D L 1953 J. Electrochem. Soc. 100 411
[2] Masuda H, Fukuda K 1995 Science 268 1466
[3] Zhou W Y, Li Y B, Liu Z Q, Tang D S, Zou X P, Wang G 2001 Chin. Phys. B 10 0218
[4] Cao H Q, Xu Y, Hong J M, Liu H B, Yin G, Li B L, Tie C Y, Xu Z 2001 Adv. Mater. 13 1393
[5] Zhang J J, Li Z Y, Zhang H M, Hou X, Sun H Y 2013 Chin. Phys. B 22 087805
[6] Pen D J, Mbindyo J K N, Carado A J, Mallouk T E, Keating C D, Razavi B, Mayer T S 2002 J. Phys. Chem. B 106 7458
[7] Zhu X F, Han H, Song Y, Ma H T, Qi W X, Lu C, Xu C 2012 Acta Phys. Sin. 61 228202 (in Chinese) [朱绪飞, 韩华, 宋晔, 马宏图, 戚卫星, 路超, 徐辰 2012 物理学报 61 228202]
[8] Li A P, Muller F, Briner A, Nielsch K, Gosele U 1999 Adv. Mater. 11 483
[9] Nahar R K, Khanna V K 1998 Sens. Actuaors B 46 35
[10] Kukhta A V, Gorokh G G, Kolesnik E E, Mitkovets A I, Taoubi M I, Koshin Y A 2002 Surf. Sci. 507-510 593
[11] Azevedo W M, Oliveira G B, Silva Jr E F, Khoury H J, Oliveira de Jesus E F 2006 Radiat. Prot. Dosim. 119 201
[12] Zhang B, Zhang H J, Yang Q H, Lu S Z 2010 Acta Phys. Sin. 59 1333 (in Chinese) [张斌, 张浩佳, 杨秋红, 陆神洲 2010 物理学报 59 1333]
[13] Ghrib M, Ouertania R, Gaidia M 2012 Appl. Surf. Sci. 258 4995
[14] Qin F F, Zhang H M, Wang C X, Guo C, Zhang J J 2014 Acta Phys. Sin. 63 198802 (in Chinese) [秦飞飞, 张海明, 王彩霞, 郭聪, 张晶晶 2014 物理学报 63 198802]
[15] Xu W L, Zheng M J, Wu S, Shen W Z 2004 Appl. Phys. Lett. 85 4364
[16] Liu J, Liu S, Zhou H H, Xie C J, Huang Z Y, Fu C P, Kuang Y F 2014 Thin Solid Films 552 75
[17] Du Y, Cai W L, Mo C M, Chen J, Zhang L D, Zhu X G 1999 Appl. Phys. Lett. 74 2951
[18] Sun X Y, Xu F Q, Li Z M, Zhang W H 2006 J. Lumin. 121 588
[19] Huang G S, Wu X L, Mei Y F, Shao X F, Siu G G 2003 J. Appl. Phys. 93 582
[20] Li Z J, Huang K L 2007 J. Lumin. 127 435
[21] Khan G G, Singh A K, Mandal K 2013 J. Lumin. 134 772
[22] Fang D, Li L C, Xu W L, Wang Y L, Jiang M, Guo X Q, Liu X 2014 Sci. Engineer. B 179 71
[23] Yamamoto Y, Baba N, Tajima S 1981 Nature 289 572
[24] Li Y, Li G H, Meng G W, Zhang L D, Phillipp F 2001 J. Phys. Condens. Matter 13 2691
[25] Huang G S, Wu X L, Yang L W, Shao X F, Siu G G, Chu P K 2005 Appl. Phys. A: Mater. Sci. Process 81 1345
[26] Vrublevsky I, Chernyakova K, Ispas A, Bund A, Gaponik N, Dubavik A 2011 J. Lumin. 131 938
[27] Rauf A, Mehmood M, Ahmed M, Hasan M, Aslam M 2010 J. Lumin. 130 792
[28] Chen W, Tang H G, Shi C S, Deng J, Shi J Y, Zhou Y X, Xia S D, Wang Y X, Yin S T 1995 Appl. Phys. Lett. 67 317
[29] Draeger B G, Summers G P 1979 Phys. Rev. B 19 1172
[30] Fu G S, Wang X Z, Lu W B, Dai W L, Li X K, Yu W 2012 Chin. Phys. B 21 107802
[31] Yang X B, Li H J, Bi Q Y, Cheng Y, Tang Q, Xu J 2008 J. Appl. Phys. 104 123112
-
[1] Keller F, Hunter M S, Robinson D L 1953 J. Electrochem. Soc. 100 411
[2] Masuda H, Fukuda K 1995 Science 268 1466
[3] Zhou W Y, Li Y B, Liu Z Q, Tang D S, Zou X P, Wang G 2001 Chin. Phys. B 10 0218
[4] Cao H Q, Xu Y, Hong J M, Liu H B, Yin G, Li B L, Tie C Y, Xu Z 2001 Adv. Mater. 13 1393
[5] Zhang J J, Li Z Y, Zhang H M, Hou X, Sun H Y 2013 Chin. Phys. B 22 087805
[6] Pen D J, Mbindyo J K N, Carado A J, Mallouk T E, Keating C D, Razavi B, Mayer T S 2002 J. Phys. Chem. B 106 7458
[7] Zhu X F, Han H, Song Y, Ma H T, Qi W X, Lu C, Xu C 2012 Acta Phys. Sin. 61 228202 (in Chinese) [朱绪飞, 韩华, 宋晔, 马宏图, 戚卫星, 路超, 徐辰 2012 物理学报 61 228202]
[8] Li A P, Muller F, Briner A, Nielsch K, Gosele U 1999 Adv. Mater. 11 483
[9] Nahar R K, Khanna V K 1998 Sens. Actuaors B 46 35
[10] Kukhta A V, Gorokh G G, Kolesnik E E, Mitkovets A I, Taoubi M I, Koshin Y A 2002 Surf. Sci. 507-510 593
[11] Azevedo W M, Oliveira G B, Silva Jr E F, Khoury H J, Oliveira de Jesus E F 2006 Radiat. Prot. Dosim. 119 201
[12] Zhang B, Zhang H J, Yang Q H, Lu S Z 2010 Acta Phys. Sin. 59 1333 (in Chinese) [张斌, 张浩佳, 杨秋红, 陆神洲 2010 物理学报 59 1333]
[13] Ghrib M, Ouertania R, Gaidia M 2012 Appl. Surf. Sci. 258 4995
[14] Qin F F, Zhang H M, Wang C X, Guo C, Zhang J J 2014 Acta Phys. Sin. 63 198802 (in Chinese) [秦飞飞, 张海明, 王彩霞, 郭聪, 张晶晶 2014 物理学报 63 198802]
[15] Xu W L, Zheng M J, Wu S, Shen W Z 2004 Appl. Phys. Lett. 85 4364
[16] Liu J, Liu S, Zhou H H, Xie C J, Huang Z Y, Fu C P, Kuang Y F 2014 Thin Solid Films 552 75
[17] Du Y, Cai W L, Mo C M, Chen J, Zhang L D, Zhu X G 1999 Appl. Phys. Lett. 74 2951
[18] Sun X Y, Xu F Q, Li Z M, Zhang W H 2006 J. Lumin. 121 588
[19] Huang G S, Wu X L, Mei Y F, Shao X F, Siu G G 2003 J. Appl. Phys. 93 582
[20] Li Z J, Huang K L 2007 J. Lumin. 127 435
[21] Khan G G, Singh A K, Mandal K 2013 J. Lumin. 134 772
[22] Fang D, Li L C, Xu W L, Wang Y L, Jiang M, Guo X Q, Liu X 2014 Sci. Engineer. B 179 71
[23] Yamamoto Y, Baba N, Tajima S 1981 Nature 289 572
[24] Li Y, Li G H, Meng G W, Zhang L D, Phillipp F 2001 J. Phys. Condens. Matter 13 2691
[25] Huang G S, Wu X L, Yang L W, Shao X F, Siu G G, Chu P K 2005 Appl. Phys. A: Mater. Sci. Process 81 1345
[26] Vrublevsky I, Chernyakova K, Ispas A, Bund A, Gaponik N, Dubavik A 2011 J. Lumin. 131 938
[27] Rauf A, Mehmood M, Ahmed M, Hasan M, Aslam M 2010 J. Lumin. 130 792
[28] Chen W, Tang H G, Shi C S, Deng J, Shi J Y, Zhou Y X, Xia S D, Wang Y X, Yin S T 1995 Appl. Phys. Lett. 67 317
[29] Draeger B G, Summers G P 1979 Phys. Rev. B 19 1172
[30] Fu G S, Wang X Z, Lu W B, Dai W L, Li X K, Yu W 2012 Chin. Phys. B 21 107802
[31] Yang X B, Li H J, Bi Q Y, Cheng Y, Tang Q, Xu J 2008 J. Appl. Phys. 104 123112
Catalog
Metrics
- Abstract views: 6207
- PDF Downloads: 538
- Cited By: 0