搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

阳极氧化制备多孔氧化铝过程中碳棒导电行为与机制

杨淑敏 李欣 顾建军 岂云开

引用本文:
Citation:

阳极氧化制备多孔氧化铝过程中碳棒导电行为与机制

杨淑敏, 李欣, 顾建军, 岂云开

Conductive behavior and mechanism of carbon rods during preparing porous aluminum oxide by anodization

YANG Shumin, LI Xin, GU Jianjun, QI Yunkai
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 多孔氧化铝薄膜因其优异的介电、机械和光学性能, 广泛应用于电子器件、催化载体等领域. 阳极氧化是制备高质量多孔氧化铝薄膜的主要方法, 常用的碳棒对电极的导电行为和机制是影响薄膜微结构及其物性的一个重要因素. 本文选取质量分数为6%的磷酸为电解液, 圆形铝箔为阳极, 碳棒作为对电极, 电极间距为15 cm, 氧化时间为40 s, 实验研究了氧化电压在100—140 V下碳棒的导电行为. 实验结果显示, 氧化铝薄膜的孔洞深度和孔径由薄膜中心向外呈对称性递减分布. 当氧化电压低于110 V时, 制备的氧化铝薄膜孔深和孔径由薄膜中心向外渐变梯度较小, 宏观上呈现均一的结构色; 当氧化电压达到110 V时, 氧化铝薄膜孔深和孔径渐变梯度较大, 薄膜呈现虹彩环形的结构色, 随着氧化电压的增大, 薄膜孔深和孔径渐变梯度增加, 结构色环的数量增多, 可见光内色域宽度显著增大. 利用电磁学和电化学理论计算了碳棒在不同氧化电压下的导电行为并分析了其导电机制, 得到了碳棒具有“准点电极”导电特性的结论, 揭示了碳棒上点电极位置的选择遵循两极间的电阻最小原则. 这一发现不仅丰富了阳极氧化的电化学理论, 还为制备多功能的氧化铝薄膜提供了理论和实验支撑.
    Porous anodic aluminum oxide (AAO) films, due to their excellent dielectric, mechanical, and optical properties, have been widely used in electronic devices, catalytic supports, and optical materials. Anodization is the primary method for fabricating high-quality porous AAO films. The conductive behavior and mechanism of commonly used carbon rod counter electrodes are significant factors influencing the microstructure and properties of the films. In this study, a phosphoric acid solution with a mass fraction of 6% is used as the electrolyte, circular aluminum foil serves as the anode, and carbon rods are used as the counter electrodes spaced 15 cm apart. The oxidation time is fixed at 40 s. The conductive behaviors of the carbon rod under oxidation voltages ranging from 100 to 140 V are experimentally investigated. The results show that the pore depth and diameter of the AAO film symmetrically decrease from the film center toward the edges. When the oxidation voltage is below 110 V, the gradients of pore depth and diameter from the center outward are relatively small, resulting in a macroscopically uniform structural color. At an oxidation voltage of 110 V, the gradients of pore depth and diameter increase significantly, resulting in iridescent concentric ring structural colors. As the voltage increases further, the gradients become more pronounced, the number of structural color rings increases, and the visible color gamut significantly broadens. Electromagnetic and electrochemical theories are utilized to calculate the conductive behaviors of the carbon rod under different oxidation voltages and to analyze its conduction mechanism. The carbon rod is found to exhibit “quasi-point electrode” conductive characteristics, with the selection of point electrode positions on the carbon rod following the principle of minimizing the resistance between the two electrodes. This finding not only enriches the electrochemical theory of anodization but also provides theoretical and experimental support for fabricating multifunctional AAO films.
  • 图 1  电化学实验装置图

    Fig. 1.  Diagram of electrochemical experimental setup.

    图 2  氧化电压分别为100, 110, 120, 130和140 V, 氧化时间均为40 s的薄膜数码照片

    Fig. 2.  Digital photographs of thin films prepared under conditions with oxidation voltages of 100, 110, 120, 130, and 140 V, and oxidation times of 40 seconds each.

    图 3  (a)氧化电压大于110 V时电流线示意图; (b)AAO薄膜测试区域图

    Fig. 3.  (a) Current line diagram when the oxidation voltage is greater than 110 V; (b) AAO film test area map.

    图 4  氧化电压140 V, 氧化时间40 s制备的AAO薄膜不同区域的SEM图 (a) 薄膜A区域; (b) 薄膜B区域; (c) 薄膜C区域; (d) 薄膜D区域; (e) 薄膜E区域; (f) 薄膜F区域

    Fig. 4.  Surface electron microscopic images of different regions of AAO films prepared at oxidation voltage of 140 V, oxidation time of 40 s: (a) Region A; (b) region B; (c) region C; (d) region D; (e) region E; (f) region F.

    图 5  图像二值法计算AAO孔隙率示意图 (a) 先将图像二值化; (b) 阈值选择; (c) 面积计算

    Fig. 5.  Diagram illustrating the calculation of porosity of AAO using image binarization method: (a) Convert the image to a binary format; (b) threshold selection; (c) area calculation.

    图 6  氧化电压140 V, 氧化时间40 s制备的AAO薄膜不同区域的SEM截面图 (a) 薄膜A区域; (b) 薄膜B区域; (c) 薄膜C区域; (d) 薄膜D区域; (e) 薄膜E区域; (f) 薄膜F区域

    Fig. 6.  Cross-sectional electron microscopy images of AAO films prepared at an oxidation voltage of 140 V and an oxidation time of 40 s, showing different regions: (a) Region A; (b) region B; (c) region C; (d) region D; (e) region E; (f) region F.

    图 7  (a) AAO薄膜厚度截面示意图; (b) 100 V制备的AAO薄膜测试区域图

    Fig. 7.  (a)AAO film thickness cross-section diagram; (b)test area map of AAO film fabricated at 100 V.

    图 8  氧化电压100 V, 氧化时间40 s制备的AAO薄膜不同区域的SEM图 (a), (d) 薄膜A区域的表面和截面SEM照片; (b), (e) 薄膜B区域的表面和截面SEM照片; (c), (f) 薄膜C区域的表面和截面SEM照片

    Fig. 8.  SEM images of different regions of the AAO film prepared at an anodization voltage of 100 V and an anodization time of 40 s: (a), (d) Surface SEM image of region A in film; (b), (e) surface SEM image of region B in film; (c), (f) surface SEM image of region C in film.

    图 9  氧化电压100 V时等效电流线示意图

    Fig. 9.  Equivalent current line diagram at an oxidation voltage of 100 V.

    图 10  (a) 碳球点电极电流线示意图; (b) 碳球点电极、氧化电压30 V、氧化时间为4 min数码照片; (c) 碳球点电极、氧化电压30 V、氧化时间为4 min样品的测试区域

    Fig. 10.  (a) Schematic diagram of current lines for carbon sphere microelectrode; (b) digital photograph of carbon sphere microelectrode at an oxidation voltage of 30 V and oxidation time of 4 min; (c) test area of the sample with carbon sphere microelectrode at an oxidation voltage of 30 V and oxidation time of 4 min.

    图 11  碳球点电极、氧化电压30 V, 氧化时间4 min制备的AAO薄膜不同区域的表面电镜图 (a) 区域A; (b) 区域B; (c) 区域C; (d) 区域D

    Fig. 11.  Surface SEM images of AAO films prepared with a carbon sphere point electrode, oxidation voltage of 30 V, and oxidation time of 4 min from different regions: (a) Region A; (b) region B; (c) region C; (d) region D.

    图 12  碳球点电极、氧化电压30 V, 氧化时间4 min制备的AAO薄膜不同区域的截面电镜图 (a) 区域A; (b) 区域B; (c) 区域C; (d) 区域D

    Fig. 12.  Cross-sectional SEM images of AAO films prepared with a carbon sphere point electrode, oxidation voltage of 30 V, and oxidation time of 4 min from different regions: (a) Region A; (b) region B; (c) region C; (d) region D.

    图 13  碳棒“准点电极”氧化示意图

    Fig. 13.  Schematic diagram of oxidation of carbon rod “quasi-point electrode”.

    图 14  碳棒作为“准点电极”导电机理探讨示意图

    Fig. 14.  Schematic diagram for investigating the conduction mechanism of carbon rod as a "quasi-point electrode".

    图 15  图14(b)O与$ {O}^{\prime} $距离分别为0, 0.2, 0.4和0.6 cm, 氧化电压为110 V, 氧化时间为40 s条件下制备的AAO薄膜数码照片

    Fig. 15.  In Fig.14(b) shows digital photographs of AAO films prepared under an oxidation voltage of 110 V and an oxidation time of 40 s, with O-to-$ {O}^{\prime} $ distances of 0, 0.2, 0.4, and 0.6 cm, respectively.

    表 1  氧化电压140 V, 氧化时间40 s的氧化铝薄膜测量参数和计算数据

    Table 1.  Measurement parameters and calculation data of alumina film with oxidation voltage of 140 V, oxidation time of 40 s.

    区域ABCDEF
    孔隙率0.04630.04570.04480.04260.04180.0377
    薄膜厚度/nm550458386250220178
    有效折射率1.62
    干涉级别/m222111
    反射波长/nm713594500540475385
    对应颜色红色黄色绿色绿色蓝色紫色
    下载: 导出CSV

    表 2  氧化电压100 V, 氧化时间40 s的氧化铝薄膜测量参数和计算数据

    Table 2.  Measurement parameters and calculation data of alumina film with oxidation voltage of 100 V, oxidation time of 40 s.

    区域ABC
    平均孔半径/nm109.59
    孔隙率0.04250.04100.0382
    薄膜厚度/nm264254230
    有效折射率1.621.621.62
    干涉级别/m111
    反射波长/nm570549497
    对应颜色绿色绿色绿色
    下载: 导出CSV

    表 3  碳球点电极、氧化电压30 V, 氧化时间4 min的氧化铝薄膜测量参数和计算数据

    Table 3.  Measurement parameters and calculation data for the aluminum oxide film with carbon sphere point electrode, oxidation voltage of 30 V, and oxidation time of 4 min.

    区域ABCD
    平均孔径/nm33302826
    平均孔间距/nm9797100105
    孔隙率0.1270.1060.0930.061
    薄膜厚度/nm300263226190
    有效折射率1.571.581.591.61
    干涉级别/m1111
    反射波长/nm628554479408
    对应颜色红色绿色蓝色紫色
    下载: 导出CSV

    表 4  碳棒平移不同位置氧化电流对应表

    Table 4.  Table of oxidation currents corresponding to different lateral positions of the carbon rod.

    等效角θ/(°)(图14(a) $ {O}^{\prime}{O}^{\prime\prime} $
    和$ {O}^{\prime}A $ 的夹角, 或图14(b)
    $ {O}^{\prime\prime}O与{O}^{\prime\prime}{O}^{\prime} $ 的夹角)
    15° 30° 60°
    导电电流/mA 0.44 0.31 0.24 0.14
    下载: 导出CSV
  • [1]

    Kushnir S E, Napolskii K S 2018 Mater. Des. 144 140Google Scholar

    [2]

    Liu S X, Tian J L, Zhang W 2021 Nanotechnology 32 222001Google Scholar

    [3]

    Amouzadeh Tabrizi M, Ferré-Borrull J, Marsal L F 2020 Microchim. Acta 187 230Google Scholar

    [4]

    Dolbik A V, Sasinovich D A, Zavadskii S M, Golosov D A, Meledina M V, Rabatuev G G, Lazarouk S K 2025 Surf. Eng. Appl. Electrochem. 61 333Google Scholar

    [5]

    Acosta L K, Law C S, Santos A, Ferré-Borrull J, Marsal L F 2022 APL Photonics 7 026108Google Scholar

    [6]

    Ruiz-Clavijo A, Caballero-Calero O, Martín-González M 2021 Nanoscale 13 2227Google Scholar

    [7]

    Pappas J M, Thakur A R, Dong X Y 2020 Mater. Des. 192 108711Google Scholar

    [8]

    Szwachta G, Januszewska B, Włodarski M, Norek M 2023 Appl. Surf. Sci. 607 155031Google Scholar

    [9]

    Li P Z, Zhang Y, Zhang J Z, Liu L, Wang S, Liu R, Song Y, Zhu X F 2024 Trans. Nonferrous Met. Soc. China 34 2918Google Scholar

    [10]

    Sun X D, Guo X, Zhang J H, Wu J, Shi Y, Sun H Y, Pan C F, Pan L J 2024 Rare Met. 43 5410Google Scholar

    [11]

    He C Y, Qin L Y, Zhang S Y, Chen B Y, Zhu J Q, Lin F, Zhu X F 2024 Ceram. Int. 50 30906Google Scholar

    [12]

    岂云开, 杨淑敏, 李欣, 徐芹, 顾建军 2022 物理学报 71 017801Google Scholar

    Qi Y K, Yang S M, Li X, Xu Q, Gu J J 2022 Acta Phys. Sin. 71 017801Google Scholar

    [13]

    Evertsson J, Vinogradov N A, Harlow G S, Carlà F, McKibbin S R, Rullik L, Linpé W, Felici R, Lundgren E 2018 RSC Adv. 8 18980Google Scholar

    [14]

    Kim B, Youn Y, Park Y S, Moon D N, Kang K, Han S, Lee J S 2016 Scr. Mater. 122 102Google Scholar

    [15]

    Roslyakov I V, Gordeeva E O, Napolskii K S 2017 Electrochim. Acta 241 362Google Scholar

    [16]

    Białek E, Włodarski M, Norek M 2020 Materials 13 3185Google Scholar

    [17]

    Kant K, Low K S, Marshal A, Shapter J G, Losic D, 2010 Appl. Mater. 2 3447Google Scholar

    [18]

    杨淑敏, 韩伟, 顾建军, 李海涛, 岂云开 2015 物理学报 64 076102Google Scholar

    Yang S M, Han W, Gu J J, Li H T, Qi Y K 2015 Acta Phys. Sin. 64 076102Google Scholar

    [19]

    Yang S M, Wang A, Lin X M, Qi Y K, Shi G C, Han W, Gu J J 2024 Crystals 14 1102Google Scholar

    [20]

    Yang S M, Wang A, Li X, Shi G C, Qi Y K, Gu J J 2022 Molecules 27 4932Google Scholar

    [21]

    Brzózka A, Brudzisz A, Jeleń A, Kozak M, Wesół J, Iwaniec M, Sulka G D 2021 Mater. Sci. Eng. , B 263 114801Google Scholar

    [22]

    Li X Q, Wang J H, Fu Z Y, Dai G M, Tang Y, Chu F, Hou T, Wang Y, Song Y 2025 Chem. Select 10 e202500507

    [23]

    李国栋, 王倩, 邓保霞, 张雅晶 2014 物理学报 63 247802Google Scholar

    Li G D, Wang Q, Deng B X, Zhang Y J 2014 Acta Phys. Sin. 63 247802Google Scholar

    [24]

    邱宇, 欧阳敏, 胡斌, 杨文博, 盖永浩, 邓聪, 张文祥 2023 吉林大学学报(信息科学版) 41 952

    Qiu Y, Ouyang M, Hu B, Yang W B, Gai Y H, Deng C, Zhang W X 2023 J. f Jilin Univ. (Inf. Sci. Ed. ) 41 952

    [25]

    Thompson G E, Wood G C 1983 Academic Press 23 269

  • [1] 杨淑敏, 李欣, 顾建军, 岂云开. 阳极氧化制备多孔氧化铝过程中碳棒导电行为与机制. 物理学报, doi: 10.7498/aps.75.20251029
    [2] 卓俊添, 林铭浩, 张齐艳, 黄双武. 热塑性聚酰亚胺/氧化铝三明治结构柔性电介质薄膜的设计制备及其高温介电储能性能. 物理学报, doi: 10.7498/aps.73.20240838
    [3] 张兴玉. 电流密度对微米硅电极断裂行为的影响. 物理学报, doi: 10.7498/aps.69.20200915
    [4] 杨淑敏, 韩伟, 顾建军, 李海涛, 岂云开. 虹彩环形结构色氧化铝薄膜的制备与研究. 物理学报, doi: 10.7498/aps.64.076102
    [5] 陈礼诚, 张冬仙, 章海军, 王旭龙琦. 基于微纳结构与金属纳米层的颜色调控技术研究. 物理学报, doi: 10.7498/aps.64.038102
    [6] 任桂明, 郑圆圆, 王丁, 王林, 谌晓洪, 王玲, 马敏, 刘华兵. 氢化氧化铝的同位素效应研究. 物理学报, doi: 10.7498/aps.63.233104
    [7] 秦飞飞, 张海明, 王彩霞, 郭聪, 张晶晶. 基于阳极氧化铝纳米光栅的薄膜硅太阳能电池双重陷光结构设计与仿真. 物理学报, doi: 10.7498/aps.63.198802
    [8] 李国栋, 王倩, 邓保霞, 张雅晶. 多孔氧化铝薄膜的光致发光起源: 三种缺陷中心. 物理学报, doi: 10.7498/aps.63.247802
    [9] 王旭龙琦, 张冬仙, 章海军. 基于多孔氧化铝和单原子沉积技术的颜色调控方法研究. 物理学报, doi: 10.7498/aps.60.058104
    [10] 廖国进, 闫绍峰, 巴德纯. 铈掺杂氧化铝薄膜的蓝紫色发光特性. 物理学报, doi: 10.7498/aps.57.7327
    [11] 黄丽清, 潘华强, 王 军, 童慧敏, 朱 可, 任冠旭, 王永昌. 多孔氧化铝膜上自组织生长Sn纳米点阵列的研究. 物理学报, doi: 10.7498/aps.56.6712
    [12] 刘龙平, 赵振杰, 黄灿星, 吴志明, 杨燮龙. 复合结构丝中的电流密度分布和巨磁阻抗效应. 物理学报, doi: 10.7498/aps.55.2014
    [13] 吴汉华, 汪剑波, 龙北玉, 吕宪义, 龙北红, 金曾孙, 白亦真, 毕冬梅. 电流密度对铝合金微弧氧化膜物理化学特性的影响. 物理学报, doi: 10.7498/aps.54.5743
    [14] 王成伟, 王 建, 李 燕, 刘维民, 徐 洮, 孙小伟, 力虎林. 多孔阳极氧化铝薄膜光学常数的确定. 物理学报, doi: 10.7498/aps.54.439
    [15] 李 燕, 王成伟, 田 军, 刘维民, 陈 淼, 力虎林. 钴/氧化铝纳米有序阵列复合结构的光学特性研究. 物理学报, doi: 10.7498/aps.53.1594
    [16] 马春兰. 高质量规则多孔氧化铝模板的制备. 物理学报, doi: 10.7498/aps.53.1952
    [17] 武珊. Cu + 掺杂口氧化铝光谱性能的研究. 物理学报, doi: 10.7498/aps.44.1003
    [18] 承焕生, 要小未, 杨福家. 氧化铝与Al(100)基体间界面原子结构研究. 物理学报, doi: 10.7498/aps.42.1110
    [19] 承焕生;要小未;杨福家. 氧化铝与Al(100)基体间界面原子结构研究. 物理学报, doi: 10.7498/aps.40.1110
    [20] 贺继平. 提高氧化铝坩埚使用寿命的方法. 物理学报, doi: 10.7498/aps.16.423
计量
  • 文章访问数:  15
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-01
  • 修回日期:  2025-10-27
  • 上网日期:  2025-12-13

/

返回文章
返回