Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Constructing circulant measurement matrix through alternating optimizing amplitudes together with chaotic stochastic phases of the matrix generating elements

Guo Jing-Bo Wang Ren

Citation:

Constructing circulant measurement matrix through alternating optimizing amplitudes together with chaotic stochastic phases of the matrix generating elements

Guo Jing-Bo, Wang Ren
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Circulant measurement matrix has been widely used in compressive sensing because of its high-speed discrete convolution algorithm. The typical work of optimizing circulant measurement matrix was introduced by Wotao Yin in Reference [16]. Motivated by his work, the construction of circulant measurement matrix in this paper is explored from the view point of generating elements' amplitudes and phases; and the optimal construction procedures are proposed based on alternately optimizing amplitudes in conjunction with chaotic stochastic phases of the matrix generating elements. The main idea of this paper is based on two innovations: The first one is to reduce the mutual coherence between column vectors of equivalent dictionary by alternately optimizing the generating elements' amplitudes, thus improving the recovery performance of the circulant measurement matrix. From the different expressions of the circulant matrixes of one-dimensional and two-dimensional signal, by setting the Welch bound for the coefficient of mutual coherence between the column vectors of equivalent dictionary as the approximation objective, two novel unified mathematical models are derived from the optimizing function for generating elements' amplitudes of the two different matrixes. Optimal solutions for generating elements' amplitudes are gained by alternately optimizing method. The second innovation is to construct the generating elements' phases of circulant measurement matrix by utilization of a chaotic sequence with independent property. The chaotic stochastic phase of the circulant measurement matrix generating elements are generated by taking advantage of the chaotic internal certainty, which means an independent identically-distributed randomness sequence can be produced by the chaotic map with the initial value at certain sampling distance. At the same time, the external randomness of chaotic sequence can satisfy the stochastic requirement of circulant measurement matrix. This paper presents the method of constructing chaotic stochastic phase using Cat chaotic map. Experimental results of one-dimensional and two-dimensional signals in the optimized circulant measurement matrix are studied in this paper, which has a better performance as compared with the results of conventional circulant measurement matrixes, such as Gaussian circulant matrix and optimized circulant matrix proposed by Wotao Yin. The column vectors of equivalent dictionary in the optimized circulant measurement matrix have lower mutual coherence, this is the essence of the superiority of the optimized circulant matrix.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51277100).
    [1]

    Donoho D L 2006 IEEE Trans. Inform. Theory 52 1289

    [2]

    Candès E J, Romberg J, Tao T 2006 IEEE Trans. Inform. Theory 52 489

    [3]

    Chen S S, Donoho D L, Saunders M A 2001 SIAM 43 129

    [4]

    Needell D 2009 Ph. D. Dissertation (California: University of California)

    [5]

    Zhang H M, Wang L Y, Yan B, Li L, Xi X Q, Lu L Z 2013 Chin. Phys. B 22 078701

    [6]

    Feng B C, Fang S, Zhang L G, Li H, Tong J J, Li W Q 2013 Acta Phys. Sin. 62 112901 (in Chinese) [冯丙辰, 方晟, 张立国, 李红, 童节娟, 李文茜 2013 物理学报 62 112901]

    [7]

    Yin W, Morgan S, Yang J F, Zhang Y 2010 Visual Communications and Image Processing (International Society for Optics and Photonics) p77440K

    [8]

    Donoho D L, Elad M 2003 Proc. Natl. Acad. Sci. USA 100 2197

    [9]

    Duarte-Carvajalino J M, Sapiro G 2009 IEEE Trans. Image Process. 18 1395

    [10]

    Abolghasemi V, Ferdowsi S, Sanei S 2012 Signal Process. 92 999

    [11]

    Xu J P, Pi Y M, Cao Z J 2010 EURASIP J. Adv. Signal Process. 2010 43

    [12]

    Li G, Zhu Z H, Yang D H, Chang L P, Bai H 2013 IEEE Trans. Signal Process. 6 2887

    [13]

    Rauhut H, Romberg J, Tropp J A 2012 Applied and Computational Harmonic Analysis 32 242

    [14]

    Romberg J 2009 16th IEEE International Conference on Digital Signal Processing p1

    [15]

    Romberg J 2009 SIAM. J. Imaging Sci. 2 1098

    [16]

    Yin W, Osher S, Xu Y 2014 to appear in Inverse Problems and Imaging

    [17]

    Guo J B, Xu X Z, Shi Q H, Hu T H 2013 Acta Phys. Sin. 62 110508 (in Chinese) [郭静波, 徐新智, 史启航, 胡铁华 2013 物理学报 62 110508]

    [18]

    Candès E J 2008 Comptes. Rendus Math. 346 589

    [19]

    Donoho D L, Elad M 2003 Proc. Natl. Acad. Sci. USA 100 2197

    [20]

    Tropp J A 2004 IEEE Trans. Inform. Theory 50 2231

    [21]

    Gribonval R, Nielsen M 2003 IEEE Trans. Inform. Theory 49 3320

    [22]

    Strohmer T, Heath R W 2003 Appl. Comput. Harmon. Anal. 14 257

    [23]

    Tropp J A, Dhillon I S, Heath R W, Strohmer T 2005 IEEE Trans. Inform. Theory 51 188

    [24]

    Aharon M, Elad M, Bruckstein A 2006 IEEE Trans. Signal Process. 54 4311

    [25]

    Arnold V I, Avez A 1968 Ergodic problems of classical mechanics (New York: Benjamin) pp5-7

    [26]

    Chen G, Mao Y, Chui C K 2004 Chaos Solitons & Fractals 21 749

    [27]

    Guo J B, Wang R 2014 Acta Phys. Sin. 63 198402 (in Chinese) [郭静波, 汪韧 2014 物理学报 63 198402]

    [28]

    Yang J, Zhang Y 2011 SIAM. J. Sci. Comp. 33 250

    [29]

    Martin D, Fowlkes C, Tal D, Malik J 2001 Proceedings 8th IEEE International Conference on Computer Vision July 2001 2 p416

  • [1]

    Donoho D L 2006 IEEE Trans. Inform. Theory 52 1289

    [2]

    Candès E J, Romberg J, Tao T 2006 IEEE Trans. Inform. Theory 52 489

    [3]

    Chen S S, Donoho D L, Saunders M A 2001 SIAM 43 129

    [4]

    Needell D 2009 Ph. D. Dissertation (California: University of California)

    [5]

    Zhang H M, Wang L Y, Yan B, Li L, Xi X Q, Lu L Z 2013 Chin. Phys. B 22 078701

    [6]

    Feng B C, Fang S, Zhang L G, Li H, Tong J J, Li W Q 2013 Acta Phys. Sin. 62 112901 (in Chinese) [冯丙辰, 方晟, 张立国, 李红, 童节娟, 李文茜 2013 物理学报 62 112901]

    [7]

    Yin W, Morgan S, Yang J F, Zhang Y 2010 Visual Communications and Image Processing (International Society for Optics and Photonics) p77440K

    [8]

    Donoho D L, Elad M 2003 Proc. Natl. Acad. Sci. USA 100 2197

    [9]

    Duarte-Carvajalino J M, Sapiro G 2009 IEEE Trans. Image Process. 18 1395

    [10]

    Abolghasemi V, Ferdowsi S, Sanei S 2012 Signal Process. 92 999

    [11]

    Xu J P, Pi Y M, Cao Z J 2010 EURASIP J. Adv. Signal Process. 2010 43

    [12]

    Li G, Zhu Z H, Yang D H, Chang L P, Bai H 2013 IEEE Trans. Signal Process. 6 2887

    [13]

    Rauhut H, Romberg J, Tropp J A 2012 Applied and Computational Harmonic Analysis 32 242

    [14]

    Romberg J 2009 16th IEEE International Conference on Digital Signal Processing p1

    [15]

    Romberg J 2009 SIAM. J. Imaging Sci. 2 1098

    [16]

    Yin W, Osher S, Xu Y 2014 to appear in Inverse Problems and Imaging

    [17]

    Guo J B, Xu X Z, Shi Q H, Hu T H 2013 Acta Phys. Sin. 62 110508 (in Chinese) [郭静波, 徐新智, 史启航, 胡铁华 2013 物理学报 62 110508]

    [18]

    Candès E J 2008 Comptes. Rendus Math. 346 589

    [19]

    Donoho D L, Elad M 2003 Proc. Natl. Acad. Sci. USA 100 2197

    [20]

    Tropp J A 2004 IEEE Trans. Inform. Theory 50 2231

    [21]

    Gribonval R, Nielsen M 2003 IEEE Trans. Inform. Theory 49 3320

    [22]

    Strohmer T, Heath R W 2003 Appl. Comput. Harmon. Anal. 14 257

    [23]

    Tropp J A, Dhillon I S, Heath R W, Strohmer T 2005 IEEE Trans. Inform. Theory 51 188

    [24]

    Aharon M, Elad M, Bruckstein A 2006 IEEE Trans. Signal Process. 54 4311

    [25]

    Arnold V I, Avez A 1968 Ergodic problems of classical mechanics (New York: Benjamin) pp5-7

    [26]

    Chen G, Mao Y, Chui C K 2004 Chaos Solitons & Fractals 21 749

    [27]

    Guo J B, Wang R 2014 Acta Phys. Sin. 63 198402 (in Chinese) [郭静波, 汪韧 2014 物理学报 63 198402]

    [28]

    Yang J, Zhang Y 2011 SIAM. J. Sci. Comp. 33 250

    [29]

    Martin D, Fowlkes C, Tal D, Malik J 2001 Proceedings 8th IEEE International Conference on Computer Vision July 2001 2 p416

  • [1] Wang Pan, Wang Zhong-Gen, Sun Yu-Fa, Nie Wen-Yan. Novel compressive sensing computing model used for analyzing electromagnetic scattering characteristics of three-dimensional electrically large objects. Acta Physica Sinica, 2023, 72(3): 030202. doi: 10.7498/aps.72.20221532
    [2] Gan Hong-Ping, Zhang Tao, Hua Yi, Shu Jun, He Li-Jun. Toeplitz-block sensing matrix based on bipolar chaotic sequence. Acta Physica Sinica, 2021, 70(3): 038402. doi: 10.7498/aps.70.20201475
    [3] Chen Wei, Guo Yuan, Jing Shi-Wei. General image encryption algorithm based on deep learning compressed sensing and compound chaotic system. Acta Physica Sinica, 2020, 69(24): 240502. doi: 10.7498/aps.69.20201019
    [4] Shi Hang, Wang Li-Dan. Multi-process image encryption scheme based on compressed sensing and multi-dimensional chaotic system. Acta Physica Sinica, 2019, 68(20): 200501. doi: 10.7498/aps.68.20190553
    [5] Li Shao-Dong, Chen Yong-Bin, Liu Run-Hua, Ma Xiao-Yan. Analysis on the compressive sensing based narrow-band radar super resolution imaging mechanism of rapidly spinning targets. Acta Physica Sinica, 2017, 66(3): 038401. doi: 10.7498/aps.66.038401
    [6] Leng Xue-Dong, Wang Da-Ming, Ba Bin, Wang Jian-Hui. A quasi-cyclic compressed sensing delay estimation algorithm based on progressive edge-growth. Acta Physica Sinica, 2017, 66(9): 090703. doi: 10.7498/aps.66.090703
    [7] Shi Jie, Yang De-Sen, Shi Sheng-Guo, Hu Bo, Zhu Zhong-Rui. Compressive focused beamforming based on vector sensor array. Acta Physica Sinica, 2016, 65(2): 024302. doi: 10.7498/aps.65.024302
    [8] Zhuang Jia-Yan, Chen Qian, He Wei-Ji, Mao Tian-Yi. Imaging through dynamic scattering media with compressed sensing. Acta Physica Sinica, 2016, 65(4): 040501. doi: 10.7498/aps.65.040501
    [9] Guo Jing-Bo, Li Jia-Wen. Chaotic compressive measurement and reconstruction of binary signals. Acta Physica Sinica, 2015, 64(19): 198401. doi: 10.7498/aps.64.198401
    [10] Li Guang-Ming, Lü Shan-Xiang. Chaotic signal denoising in a compressed sensing perspective. Acta Physica Sinica, 2015, 64(16): 160502. doi: 10.7498/aps.64.160502
    [11] Kang Rong-Zong, Tian Peng-Wu, Yu Hong-Yi. An adaptive compressed sensing method based on selective measure. Acta Physica Sinica, 2014, 63(20): 200701. doi: 10.7498/aps.63.200701
    [12] Chen Ming-Sheng, Wang Shi-Wen, Ma Tao, Wu Xian-Liang. Fast analysis of electromagnetic scattering characteristics in spatial and frequency domains based on compressive sensing. Acta Physica Sinica, 2014, 63(17): 170301. doi: 10.7498/aps.63.170301
    [13] Zhang Xin-Peng, Hu Niao-Qing, Cheng Zhe, Zhong Hua. Vibration data recovery based on compressed sensing. Acta Physica Sinica, 2014, 63(20): 200506. doi: 10.7498/aps.63.200506
    [14] Wang Zhe, Wang Bing-Zhong. Application of compressed sensing theory in the method of moments. Acta Physica Sinica, 2014, 63(12): 120202. doi: 10.7498/aps.63.120202
    [15] Li Long-Zhen, Yao Xu-Ri, Liu Xue-Feng, Yu Wen-Kai, Zhai Guang-Jie. Super-resolution ghost imaging via compressed sensing. Acta Physica Sinica, 2014, 63(22): 224201. doi: 10.7498/aps.63.224201
    [16] Guo Jing-Bo, Wang Ren. Construction of a circulant compressive measurement matrix based on chaotic sequence and RIPless theory. Acta Physica Sinica, 2014, 63(19): 198402. doi: 10.7498/aps.63.198402
    [17] Ning Fang-Li, He Bi-Jing, Wei Juan. An algorithm for image reconstruction based on lp norm. Acta Physica Sinica, 2013, 62(17): 174212. doi: 10.7498/aps.62.174212
    [18] Feng Bing-Chen, Fang Sheng, Zhang Li-Guo, Li Hong, Tong Jie-Juan, Li Wen-Qian. A non-linear analysis for gamma-ray spectrum based on compressed sensing. Acta Physica Sinica, 2013, 62(11): 112901. doi: 10.7498/aps.62.112901
    [19] Bai Xu, Li Yong-Qiang, Zhao Sheng-Mei. Differential compressive correlated imaging. Acta Physica Sinica, 2013, 62(4): 044209. doi: 10.7498/aps.62.044209
    [20] Liu Hui-Shi, Xin Xiang-Jun, Yin Xiao-Li, Yu Chong-Xiu, Zhang Qi. An optimization scheme for generating of Chebyshev optical chaotic sequence. Acta Physica Sinica, 2009, 58(4): 2231-2234. doi: 10.7498/aps.58.2231
Metrics
  • Abstract views:  6056
  • PDF Downloads:  161
  • Cited By: 0
Publishing process
  • Received Date:  21 October 2014
  • Accepted Date:  02 February 2015
  • Published Online:  05 July 2015

/

返回文章
返回