Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Recent experimental progress in low-dimensional superconductors

Zhang Xi Liu Chao-Fei Wang Jian

Citation:

Recent experimental progress in low-dimensional superconductors

Zhang Xi, Liu Chao-Fei, Wang Jian
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Superconductivity is one of the most important research fields in condensed matter physics. The rapid development of material preparation technology in last few years has made the experimental study of low-dimensional physical superconducting properties feasible. This article gives a brief introduction on superconductivity and technology of low-dimensional material fabrication, and mainly focuses on the experimental progress in electrical transport studies on one-and two-dimensional superconductors, especially the results from our group. As for one-dimensional superconductivity, we review the superconductivities in single crystal Bi nanowires, crystalline Pb nano-belts, and amorphous W nanobelts, and the proximity effects in superconducting nanowires, metallic nanowires, and ferromagnetic nanowires. Surface superconductivity is revealed for crystalline Bi nanowire. The step-like voltage platforms in V-I curves are observed in Pb nano-belts and may be attributed to phase slip centers. Besides, vortex glass (VG) phase transition is discovered in amorphous W nano-belts. Inverse proximity effect is detected in crystalline Pb nanowires with normal electrodes, and proximity induced mini-gap is found in crystalline Au nanowire with superconducting electrodes. Furthermore, in crystalline ferromagnetic Co nanowire contacted by superconducting electrodes, unconventional long range proximity effect is observed. As for two-dimensional superconductivity, we review the superconductivities in Pb thin films on Si substrates, 2 atomic layer Ga films on GaN substrates, and one-unit-cell thick FeSe film on STO substrates grown by molecular beam epitaxy (MBE) method. By both in situ scanning tunneling microscopy/spectroscopy and ex situ transport and magnetization measurements, the two-atomic-layer Ga film with graphene-like structure on wide band-gap semiconductor GaN is found to be superconducting with Tc up to 5.4 K. By direct transport and magnetic measurements, the strong evidences for high temperature superconductivities in the 1-UC FeSe films on insulating STO substrates with the onset Tc and critical current density much higher than those for bulk FeSe are revealed. Finally, we give a summary and present a perspective on the future of low dimensional superconductors.
      Corresponding author: Wang Jian, jianwangphysics@pku.edu.cn
    • Funds: Project supported by the National Basic Program of China (Grant Nos. 2013CB934600, 2012CB921300), the National Natural Science Foundation of China (Grant Nos. 11222434, 11174007), and the Research Fund for the Doctoral Program of Higher Education (RFDP) of China.
    [1]

    Meissner W, Ochsenfeld R 1933 Naturwissenschaften 21 787

    [2]

    Tinkham M 1996 Introduction to Superconductivity (2nd Ed.) (New York: McGraw-Hill Inc.) pp43-108

    [3]

    Landau L D, Ginzburg V I 1950 Zh. Eksp. Teor. Fiz 20 546

    [4]

    Singh M, Wang J, Tian M L, Mallouk T E, Chan M H W 2011 Phys. Rev. B 83 220506

    [5]

    Singh M, Wang J, Tian M L, Zhang Q, Pereira A, Kumar N, Mallouk T E, Chan M H W 2009 Chem. Mater. 21 5557

    [6]

    Jose V J V 2013 40 Years of Berezinskii-Kosterlitz-Thouless Theory (Singapore: World Scientific)

    [7]

    Bera D, Kuiry S C, Seal S 2004 Jom 56 49

    [8]

    Lee W, Ji R, Gösele U, Nielsch K 2006 Nature Mater. 5 741

    [9]

    Liu Y, Allen R E 1995 Phys. Rev. B 52 1566

    [10]

    Overcash D R, Ratnam B A, Skove M J, Stillwell E P 1980 Phys. Rev. Lett. 44 1348

    [11]

    Hoffman R A, Frankl D R 1971 Phys. Rev. B 3 1825

    [12]

    Yang F Y, Liu K, Hong K, Reich D H, Searson P C, Chien C L 1999 Science 284 1335

    [13]

    Zhang Z, Sun X, Dresselhaus M S, Ying J Y, Heremans J 2000 Phys. Rev. B 61 4850

    [14]

    Wells J W, Dil J H, Meier F, Lobo-Checa J, Petrov V N, Osterwalder J, Ugeda M M, Fernandez-Torrente I, Pascual J I, Rienks E D L, Jensen M F, Hofmann Ph 2009 Phys. Rev. Lett. 102 096802

    [15]

    Nikolaeva A, Gitsu D, Konopko L, Graf M J, Huber T E 2008 Phys. Rev. B 77 075332

    [16]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045

    [17]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057

    [18]

    Zhang H, Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2009 Nature Phys. 5 438

    [19]

    Zeng Z, Morgan T A, Fan D, Li C, Hirono Y, Hu X, Zhao Y, Lee J S, Wang J, Wang Z M, Yu S, Hawkridge M E, Benamara M, Salamo G J 2013 AIP Adv. 3 072112

    [20]

    Wang J, DaSilva A M, Chang C Z, He K, Jain J K, Samarth N, Ma X C, Xue Q K, Chan M H W 2011 Phys. Rev. B 83 245438

    [21]

    Wang H, Liu H, Chang C Z, Zuo H, Zhao Y, Sun Y, Xia Z, He K, Ma X, Xie X C, Xue Q K, Wang J 2014 Sci. Rep. 4 5817

    [22]

    Zhao Y, Chang C Z, Jiang Y, DaSilva A, Sun Y, Wang H, Xing Y, Wang Y, He K, Ma X, Xue Q K, Wang J 2013 Sci. Rep. 3 3060

    [23]

    Tian M, Wang J, Zhang Q, Kumar N, Mallouk T E, Chan M H 2009 Nano Lett. 9 3196

    [24]

    Valizadeh S, Abid M, Hjort K 2006 Nanotechnology 17 1134

    [25]

    Ye Z, Zhang H, Liu H, Wu W, Luo Z 2008 Nanotechno-logy 19 085709

    [26]

    Little W A, Parks R D 1962 Phys. Rev. Lett. 9 9

    [27]

    Parks R D, Little W A 1964 Phys. Rev. 133 A97

    [28]

    Buisson O, Gandit P, Rammal R, Wang Y Y, Pannetier B 1990 Phys. Lett. A 150 36

    [29]

    Bezryadin A, Ovchinnikov Y N, Pannetier B 1996 Phys. Rev. B 53 8553

    [30]

    Moshchalkov V V, Gielen L, Strunk C, Jonckheere R, Qiu X, Van Haesendonck C, Bruynseraede Y 1995 Nature 373 319

    [31]

    Geim A K, Grigorieva I V, Dubonos S V, Lok J G S, Maan J C, Filippov A E, Peeters F M 1997 Nature 390 259

    [32]

    Kanda A, Baelus B J, Peeters F M, Kadowaki K, Ootuka Y 2004 Phys. Rev. Lett. 93 257002

    [33]

    Yang F Y, Liu K, Chien C L, Searson P C 1999 Phys. Rev. Lett. 82 3328

    [34]

    Yang F Y, Liu K, Hong K, Reich D H, Searson P C, Chien C L, Leprince-Wang Y, Yu-Zhang K, Han K 2000 Phys. Rev. B 61 6631

    [35]

    Brown III R D 1970 Phys. Rev. B 2 928

    [36]

    Tian M, Wang J, Ning W, Mallouk T E, Chan M H W 2015 Nano Lett. 15 1487

    [37]

    Wang J, Ma X C, Lu L, Jin A Z, Gu C Z, Xie X C, Jia J F, Chen X, Xue Q K 2008 Appl. Phys. Lett. 92 233119

    [38]

    Likharev K K 1979 Rev. Mod. Phys. 51 101

    [39]

    Guo Y, Zhang Y F, Bao X Y, Han T Z, Tang Z, Zhang L X, Zhu W G, Wang E G, Niu Q, Qiu Z Q, Jia J F, Zhao Z X, Xue Q K 2004 Science 306 1915

    [40]

    Gray A, Liu Y, Hong H, Chiang T C 2013 Phys. Rev. B 87 195415

    [41]

    Zhang Y F, Jia J F, Han T Z, Tang Z, Shen Q T, Guo Y, Qiu Z Q, Xue Q K 2005 Phys. Rev. Lett. 95 096802

    [42]

    Özer M M, Thompson J R, Weitering H H 2006 Nature Phys. 2 173

    [43]

    Wang J, Ma X C, Qi Y, Fu Y S, Ji S H, Lu L, Jia J F, Xue Q K 2007 Appl. Phys. Lett. 90 113109

    [44]

    Eom D, Qin S, Chou M Y, Shih C K 2006 Phys. Rev. Lett. 96 027005

    [45]

    Wang J, Ma X C, Qi Y, Ji S H, Fu Y S, Lu L, Jin A Z, Gu C Z, Xie X C, Tian M L, Jia J F, Xue Q K 2009 J. Appl. Phys. 106 034301

    [46]

    Tian M, Wang J, Kurtz J S, Liu Y, Chan M H W, Mayer T S, Mallouk T E 2005 Phys. Rev. B 71 104521

    [47]

    Rogachev A, Bezryadin A 2003 Appl. Phys. Lett. 83 512

    [48]

    Sadki E S, Ooi S, Hirata K 2004 Appl. Phys. Lett. 85 6206

    [49]

    Jenkins D W K, Allen G C, Prewett P D, Heard P J 1991 J. Phys.: Condens. Matter 3 S199

    [50]

    Langfischer H, Basnar B, Hutter H, Bertagnolli E 2002 J. Vac. Sci. Techno. A 20 1408

    [51]

    Gross M E, Harriott L R, Opila Jr R L 1990 J. Appl. Phys. 68 4820

    [52]

    Horváth E, Neumann P L, Tóth A L, Horváth Z E, Biró L P 2007 Microelectron. Eng. 84 837

    [53]

    Li W, Fenton J C, Wang Y, McComb D W, Warburton P A 2008 J. Appl. Phys. 104 093913

    [54]

    Gibson J W, Hein R A 1964 Phys. Rev. Lett. 12 688

    [55]

    Sun Y, Wang J, Zhao W, Tian M, Singh M, Chan M H 2013 Sci. Rep. 3 2307

    [56]

    Koch R H, Foglietti V, Gallagher W J, Koren G, Gupta A, Fisher M P A 1989 Phys. Rev. Lett. 63 1511

    [57]

    Fisher M P A 1989 Phys. Rev. Lett. 62 1415

    [58]

    Jiang W, Yeh N C, Reed D S, Kriplani U, Tombrello T A, Rice A P, Holtzberg F 1993 Phys. Rev. B 47 8308

    [59]

    Yamasaki H, Endo K, Kosaka S, Umeda M, Yoshida S, Kajimura K 1994 Phys. Rev. B 50 12959

    [60]

    Zhang Y Q, Ding J F, Xiang X Q, Li X G, Chen Q H 2009 Supercond. Sci. Tech. 22 085010

    [61]

    Zhang Y Z, Deltour R, De Marneffe J F, Wen H H, Qin Y L, Dong C, Li L, Zhao Z X 2000 Phys. Rev. B 62 11373

    [62]

    Sullivan M C, Isaacs R A, Salvaggio M F, Sousa J, Stathis C G, Olson J B 2010 Phys. Rev. B 81 134502

    [63]

    Fisher D S, Huse D A 1991 Phys. Rev. B 43 130

    [64]

    Ando Y, Kubota H, Tanaka S 1993 Phys. Rev. B 48 7716

    [65]

    Villegas J E, Gonzalez E M, Sefrioui Z, Santamaria J, Vicent J L 2005 Phys. Rev. B 72 174512

    [66]

    Villegas J E, Vicent J L 2005 Phys. Rev. B 71 144522

    [67]

    De Gennes P G 1964 Rev. Mod. Phys. 36 225

    [68]

    Chiang Y N, Shevchenko O G, Kolenov R N 2007 Low Temp. Phys. 33 314

    [69]

    Aumentado J, Chandrasekhar V 2001 Phys. Rev. B 64 054505

    [70]

    Wang J, Singh M, Tian M, Kumar N, Liu B, Shi C, Jain J K, Samarth N, Mallouk T E, Chan M H W 2010 Nature Phys. 6 389

    [71]

    Wang J, Shi C, Tian M, Zhang Q, Kumar N, Jain J K, Mallouk T E, Chan M H W 2009 Phys. Rev. Lett. 102 247003

    [72]

    Bergeret F S, Volkov A F, Efetov K B 2005 Rev. Mod. Phys. 77 1321

    [73]

    Giroud M, Courtois H, Hasselbach K, Pannetier B 1998 Phys. Rev. B 58 R11872

    [74]

    Wang J, Sun Y, Tian M, Liu B, Singh M, Chan M H W 2012 Phys. Rev. B 86 035439

    [75]

    Arutyunov K Y, Ryynänen T V, Pekola J P, Pavolotski A B 2001 Phys. Rev. B 63 092506

    [76]

    Zhang D, Wang J, DaSilva A M, Lee J S, Gutierrez H R, Chan M H W, Jain J, Samarth N 2011 Phys. Rev. B 84 165120

    [77]

    Wang J, Chang C Z, Li H, He K, Zhang D, Singh M, Ma X C, Samarth N, Xie M, Xue Q K, Chan M H W 2012 Phys. Rev. B 85 045415

    [78]

    Qin S, Kim J, Niu Q, Shih C K 2009 Science 324 1314

    [79]

    Zhang T, Cheng P, Li W J, Sun Y J, Wang G, Zhu X G, He K, Wang L, Ma X, Chen X, Wang Y, Liu Y, Lin H Q, Jia J F, Xue Q K 2010 Nature Phys. 6 104

    [80]

    Brun C, Cren T, Cherkez V, Debontridder F, Pons S, Fokin D, Tringides M C, Bozhjo S, Loffe L B, Altshuler B L, Roditchev D 2014 Nature Phys. 10 444

    [81]

    Uchihashi T, Mishra P, Aono M, Nakayama T 2011 Phys. Rev. Lett. 107 207001

    [82]

    Yamada M, Hirahara T, Hasegawa S 2013 Phys. Rev. Lett. 110 237001

    [83]

    Reyren N, Thiel S, Caviglia A D, Kourkoutis L F, Hammerl G, Richter C, Schneider C W, Kopp T, Ruetschi A S, Jaccard D, Gabay M, Muller D A, Triscone J M, Mannhart J 2007 Science 317 1196

    [84]

    Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402

    [85]

    Zhang W H, Sun Y, Zhang J S, Li F S, Guo M H, Zhao Y F, Zhang H M, Peng J P, Xing Y, Wang H C, Takeshi F, Akihiko H, Li Z, Ding H, Tang C J, Wang M, Wang Q Y, He K, Ji S H, Chen X, Wang J F, Xia Z C, Li L, Wang Y Y, Wang J, Wang L L, Chen M W, Xue Q K, Ma X C 2014 Chin. Phys. Lett. 31 017401

    [86]

    Zhang H M, Sun Y, Li W, Peng J P, Song C L, Xing Y, Zhang Q H, Guan J Q, Li Z, Zhao Y F, Ji S H, Wang L, He K, Chen X, Gu L, Ling L, Tian M, Li L, Xie X C, Liu J P, Yang H, Xue Q K, Wang J, Ma X C 2015 Phys. Rev. Lett. 114 107003

    [87]

    Dynes R C, Narayanamurti V, Garno J P 1978 Phys. Rev. Lett. 41 1509

    [88]

    Bardeen J, Cooper L N, Schrieffer J R 1957 Phys. Rev. 108 1175

    [89]

    Gregory W D, Sheahen T P, Cochran J F 1966 Phys. Rev. 150 315

    [90]

    Berger L I, Roberts B W Handbook of Chemistry and Physics (London: CRC Press)

    [91]

    Brun C, Hong I P, Patthey F, Sklyadneva I Y, Heid R, Echenique P M, Bohner K P, Chulkov E V, Schneider W D 2009 Phys. Rev. Lett. 102 207002

    [92]

    Song C L, Wang Y L, Jiang Y P, Li Z, Wang L, He K, Chen X, Ma X, Xue Q 2011 Phys. Rev. B 84 020503

    [93]

    Bernardini F, Fiorentini V, Vanderbilt D 1997 Phys. Rev. B 56 R10024

    [94]

    Liu D, Zhang W, Mou D, He J, Ou Y B, Wang Q Y, Li Z, Wang L, Zhao L, He S, Peng Y, Liu X, Chen C, Yu L, Liu G, Dong X, Zhang J, Chen C, Xu Z, Hu J, Chen X, Ma X, Xue Q, Zhou X J 2012 Nature Commun. 3 931

    [95]

    He S, He J, Zhang W, Zhao L, Liu D, Liu X, Mou D, Ou Y B, Wang Q Y, Li Z, Wang L, Peng Y, Liu Y, Chen C, Yu L, Liu G, Dong X, Zhang J, Chen C, Xu Z, Chen X, Ma X, Xue Q, Zhou X J 2013 Nature Mater. 12 605

    [96]

    Zhang Y, Yang L X, Xu M, Ye Z R, Chen F, He C, Xu H C, Jiang J, Xie B P, Ying J J, Wang X F, Chen X H, Hu J P, Matsunami M, Kimura S, Feng D L 2011 Nature Mater. 10 273

    [97]

    Lei H, Hu R, Petrovic C 2011 Phys. Rev. B 84 014520

    [98]

    Claassen J H, Reeves M E, Soulen Jr R J 1991 Rev. Sci. Instrum. 62 996

    [99]

    Si W, Han S J, Shi X, Ehrlich S N, Jaroszynski J, Goyal A, Li Q 2013 Nature Commun. 4 1347

    [100]

    Gao Z, Ma Y, Yao C, Zhang X, Wang C, Wang D, Awaji S, Watanabe K 2012 Sci. Rep. 2 998

    [101]

    101 Kosterlitz J M, Thouless D J 1973 J. Phys. C: Solid St. Phys. 6 1181

    [102]

    Halperin B I, Nelson D R 1979 J. Low Temp. Phys. 36 599

    [103]

    Xing Y, Sun Y, Singh M, Zhao Y F, Chan M HW, Wang J 2013 Front. Phys. 8 491

  • [1]

    Meissner W, Ochsenfeld R 1933 Naturwissenschaften 21 787

    [2]

    Tinkham M 1996 Introduction to Superconductivity (2nd Ed.) (New York: McGraw-Hill Inc.) pp43-108

    [3]

    Landau L D, Ginzburg V I 1950 Zh. Eksp. Teor. Fiz 20 546

    [4]

    Singh M, Wang J, Tian M L, Mallouk T E, Chan M H W 2011 Phys. Rev. B 83 220506

    [5]

    Singh M, Wang J, Tian M L, Zhang Q, Pereira A, Kumar N, Mallouk T E, Chan M H W 2009 Chem. Mater. 21 5557

    [6]

    Jose V J V 2013 40 Years of Berezinskii-Kosterlitz-Thouless Theory (Singapore: World Scientific)

    [7]

    Bera D, Kuiry S C, Seal S 2004 Jom 56 49

    [8]

    Lee W, Ji R, Gösele U, Nielsch K 2006 Nature Mater. 5 741

    [9]

    Liu Y, Allen R E 1995 Phys. Rev. B 52 1566

    [10]

    Overcash D R, Ratnam B A, Skove M J, Stillwell E P 1980 Phys. Rev. Lett. 44 1348

    [11]

    Hoffman R A, Frankl D R 1971 Phys. Rev. B 3 1825

    [12]

    Yang F Y, Liu K, Hong K, Reich D H, Searson P C, Chien C L 1999 Science 284 1335

    [13]

    Zhang Z, Sun X, Dresselhaus M S, Ying J Y, Heremans J 2000 Phys. Rev. B 61 4850

    [14]

    Wells J W, Dil J H, Meier F, Lobo-Checa J, Petrov V N, Osterwalder J, Ugeda M M, Fernandez-Torrente I, Pascual J I, Rienks E D L, Jensen M F, Hofmann Ph 2009 Phys. Rev. Lett. 102 096802

    [15]

    Nikolaeva A, Gitsu D, Konopko L, Graf M J, Huber T E 2008 Phys. Rev. B 77 075332

    [16]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045

    [17]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057

    [18]

    Zhang H, Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2009 Nature Phys. 5 438

    [19]

    Zeng Z, Morgan T A, Fan D, Li C, Hirono Y, Hu X, Zhao Y, Lee J S, Wang J, Wang Z M, Yu S, Hawkridge M E, Benamara M, Salamo G J 2013 AIP Adv. 3 072112

    [20]

    Wang J, DaSilva A M, Chang C Z, He K, Jain J K, Samarth N, Ma X C, Xue Q K, Chan M H W 2011 Phys. Rev. B 83 245438

    [21]

    Wang H, Liu H, Chang C Z, Zuo H, Zhao Y, Sun Y, Xia Z, He K, Ma X, Xie X C, Xue Q K, Wang J 2014 Sci. Rep. 4 5817

    [22]

    Zhao Y, Chang C Z, Jiang Y, DaSilva A, Sun Y, Wang H, Xing Y, Wang Y, He K, Ma X, Xue Q K, Wang J 2013 Sci. Rep. 3 3060

    [23]

    Tian M, Wang J, Zhang Q, Kumar N, Mallouk T E, Chan M H 2009 Nano Lett. 9 3196

    [24]

    Valizadeh S, Abid M, Hjort K 2006 Nanotechnology 17 1134

    [25]

    Ye Z, Zhang H, Liu H, Wu W, Luo Z 2008 Nanotechno-logy 19 085709

    [26]

    Little W A, Parks R D 1962 Phys. Rev. Lett. 9 9

    [27]

    Parks R D, Little W A 1964 Phys. Rev. 133 A97

    [28]

    Buisson O, Gandit P, Rammal R, Wang Y Y, Pannetier B 1990 Phys. Lett. A 150 36

    [29]

    Bezryadin A, Ovchinnikov Y N, Pannetier B 1996 Phys. Rev. B 53 8553

    [30]

    Moshchalkov V V, Gielen L, Strunk C, Jonckheere R, Qiu X, Van Haesendonck C, Bruynseraede Y 1995 Nature 373 319

    [31]

    Geim A K, Grigorieva I V, Dubonos S V, Lok J G S, Maan J C, Filippov A E, Peeters F M 1997 Nature 390 259

    [32]

    Kanda A, Baelus B J, Peeters F M, Kadowaki K, Ootuka Y 2004 Phys. Rev. Lett. 93 257002

    [33]

    Yang F Y, Liu K, Chien C L, Searson P C 1999 Phys. Rev. Lett. 82 3328

    [34]

    Yang F Y, Liu K, Hong K, Reich D H, Searson P C, Chien C L, Leprince-Wang Y, Yu-Zhang K, Han K 2000 Phys. Rev. B 61 6631

    [35]

    Brown III R D 1970 Phys. Rev. B 2 928

    [36]

    Tian M, Wang J, Ning W, Mallouk T E, Chan M H W 2015 Nano Lett. 15 1487

    [37]

    Wang J, Ma X C, Lu L, Jin A Z, Gu C Z, Xie X C, Jia J F, Chen X, Xue Q K 2008 Appl. Phys. Lett. 92 233119

    [38]

    Likharev K K 1979 Rev. Mod. Phys. 51 101

    [39]

    Guo Y, Zhang Y F, Bao X Y, Han T Z, Tang Z, Zhang L X, Zhu W G, Wang E G, Niu Q, Qiu Z Q, Jia J F, Zhao Z X, Xue Q K 2004 Science 306 1915

    [40]

    Gray A, Liu Y, Hong H, Chiang T C 2013 Phys. Rev. B 87 195415

    [41]

    Zhang Y F, Jia J F, Han T Z, Tang Z, Shen Q T, Guo Y, Qiu Z Q, Xue Q K 2005 Phys. Rev. Lett. 95 096802

    [42]

    Özer M M, Thompson J R, Weitering H H 2006 Nature Phys. 2 173

    [43]

    Wang J, Ma X C, Qi Y, Fu Y S, Ji S H, Lu L, Jia J F, Xue Q K 2007 Appl. Phys. Lett. 90 113109

    [44]

    Eom D, Qin S, Chou M Y, Shih C K 2006 Phys. Rev. Lett. 96 027005

    [45]

    Wang J, Ma X C, Qi Y, Ji S H, Fu Y S, Lu L, Jin A Z, Gu C Z, Xie X C, Tian M L, Jia J F, Xue Q K 2009 J. Appl. Phys. 106 034301

    [46]

    Tian M, Wang J, Kurtz J S, Liu Y, Chan M H W, Mayer T S, Mallouk T E 2005 Phys. Rev. B 71 104521

    [47]

    Rogachev A, Bezryadin A 2003 Appl. Phys. Lett. 83 512

    [48]

    Sadki E S, Ooi S, Hirata K 2004 Appl. Phys. Lett. 85 6206

    [49]

    Jenkins D W K, Allen G C, Prewett P D, Heard P J 1991 J. Phys.: Condens. Matter 3 S199

    [50]

    Langfischer H, Basnar B, Hutter H, Bertagnolli E 2002 J. Vac. Sci. Techno. A 20 1408

    [51]

    Gross M E, Harriott L R, Opila Jr R L 1990 J. Appl. Phys. 68 4820

    [52]

    Horváth E, Neumann P L, Tóth A L, Horváth Z E, Biró L P 2007 Microelectron. Eng. 84 837

    [53]

    Li W, Fenton J C, Wang Y, McComb D W, Warburton P A 2008 J. Appl. Phys. 104 093913

    [54]

    Gibson J W, Hein R A 1964 Phys. Rev. Lett. 12 688

    [55]

    Sun Y, Wang J, Zhao W, Tian M, Singh M, Chan M H 2013 Sci. Rep. 3 2307

    [56]

    Koch R H, Foglietti V, Gallagher W J, Koren G, Gupta A, Fisher M P A 1989 Phys. Rev. Lett. 63 1511

    [57]

    Fisher M P A 1989 Phys. Rev. Lett. 62 1415

    [58]

    Jiang W, Yeh N C, Reed D S, Kriplani U, Tombrello T A, Rice A P, Holtzberg F 1993 Phys. Rev. B 47 8308

    [59]

    Yamasaki H, Endo K, Kosaka S, Umeda M, Yoshida S, Kajimura K 1994 Phys. Rev. B 50 12959

    [60]

    Zhang Y Q, Ding J F, Xiang X Q, Li X G, Chen Q H 2009 Supercond. Sci. Tech. 22 085010

    [61]

    Zhang Y Z, Deltour R, De Marneffe J F, Wen H H, Qin Y L, Dong C, Li L, Zhao Z X 2000 Phys. Rev. B 62 11373

    [62]

    Sullivan M C, Isaacs R A, Salvaggio M F, Sousa J, Stathis C G, Olson J B 2010 Phys. Rev. B 81 134502

    [63]

    Fisher D S, Huse D A 1991 Phys. Rev. B 43 130

    [64]

    Ando Y, Kubota H, Tanaka S 1993 Phys. Rev. B 48 7716

    [65]

    Villegas J E, Gonzalez E M, Sefrioui Z, Santamaria J, Vicent J L 2005 Phys. Rev. B 72 174512

    [66]

    Villegas J E, Vicent J L 2005 Phys. Rev. B 71 144522

    [67]

    De Gennes P G 1964 Rev. Mod. Phys. 36 225

    [68]

    Chiang Y N, Shevchenko O G, Kolenov R N 2007 Low Temp. Phys. 33 314

    [69]

    Aumentado J, Chandrasekhar V 2001 Phys. Rev. B 64 054505

    [70]

    Wang J, Singh M, Tian M, Kumar N, Liu B, Shi C, Jain J K, Samarth N, Mallouk T E, Chan M H W 2010 Nature Phys. 6 389

    [71]

    Wang J, Shi C, Tian M, Zhang Q, Kumar N, Jain J K, Mallouk T E, Chan M H W 2009 Phys. Rev. Lett. 102 247003

    [72]

    Bergeret F S, Volkov A F, Efetov K B 2005 Rev. Mod. Phys. 77 1321

    [73]

    Giroud M, Courtois H, Hasselbach K, Pannetier B 1998 Phys. Rev. B 58 R11872

    [74]

    Wang J, Sun Y, Tian M, Liu B, Singh M, Chan M H W 2012 Phys. Rev. B 86 035439

    [75]

    Arutyunov K Y, Ryynänen T V, Pekola J P, Pavolotski A B 2001 Phys. Rev. B 63 092506

    [76]

    Zhang D, Wang J, DaSilva A M, Lee J S, Gutierrez H R, Chan M H W, Jain J, Samarth N 2011 Phys. Rev. B 84 165120

    [77]

    Wang J, Chang C Z, Li H, He K, Zhang D, Singh M, Ma X C, Samarth N, Xie M, Xue Q K, Chan M H W 2012 Phys. Rev. B 85 045415

    [78]

    Qin S, Kim J, Niu Q, Shih C K 2009 Science 324 1314

    [79]

    Zhang T, Cheng P, Li W J, Sun Y J, Wang G, Zhu X G, He K, Wang L, Ma X, Chen X, Wang Y, Liu Y, Lin H Q, Jia J F, Xue Q K 2010 Nature Phys. 6 104

    [80]

    Brun C, Cren T, Cherkez V, Debontridder F, Pons S, Fokin D, Tringides M C, Bozhjo S, Loffe L B, Altshuler B L, Roditchev D 2014 Nature Phys. 10 444

    [81]

    Uchihashi T, Mishra P, Aono M, Nakayama T 2011 Phys. Rev. Lett. 107 207001

    [82]

    Yamada M, Hirahara T, Hasegawa S 2013 Phys. Rev. Lett. 110 237001

    [83]

    Reyren N, Thiel S, Caviglia A D, Kourkoutis L F, Hammerl G, Richter C, Schneider C W, Kopp T, Ruetschi A S, Jaccard D, Gabay M, Muller D A, Triscone J M, Mannhart J 2007 Science 317 1196

    [84]

    Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402

    [85]

    Zhang W H, Sun Y, Zhang J S, Li F S, Guo M H, Zhao Y F, Zhang H M, Peng J P, Xing Y, Wang H C, Takeshi F, Akihiko H, Li Z, Ding H, Tang C J, Wang M, Wang Q Y, He K, Ji S H, Chen X, Wang J F, Xia Z C, Li L, Wang Y Y, Wang J, Wang L L, Chen M W, Xue Q K, Ma X C 2014 Chin. Phys. Lett. 31 017401

    [86]

    Zhang H M, Sun Y, Li W, Peng J P, Song C L, Xing Y, Zhang Q H, Guan J Q, Li Z, Zhao Y F, Ji S H, Wang L, He K, Chen X, Gu L, Ling L, Tian M, Li L, Xie X C, Liu J P, Yang H, Xue Q K, Wang J, Ma X C 2015 Phys. Rev. Lett. 114 107003

    [87]

    Dynes R C, Narayanamurti V, Garno J P 1978 Phys. Rev. Lett. 41 1509

    [88]

    Bardeen J, Cooper L N, Schrieffer J R 1957 Phys. Rev. 108 1175

    [89]

    Gregory W D, Sheahen T P, Cochran J F 1966 Phys. Rev. 150 315

    [90]

    Berger L I, Roberts B W Handbook of Chemistry and Physics (London: CRC Press)

    [91]

    Brun C, Hong I P, Patthey F, Sklyadneva I Y, Heid R, Echenique P M, Bohner K P, Chulkov E V, Schneider W D 2009 Phys. Rev. Lett. 102 207002

    [92]

    Song C L, Wang Y L, Jiang Y P, Li Z, Wang L, He K, Chen X, Ma X, Xue Q 2011 Phys. Rev. B 84 020503

    [93]

    Bernardini F, Fiorentini V, Vanderbilt D 1997 Phys. Rev. B 56 R10024

    [94]

    Liu D, Zhang W, Mou D, He J, Ou Y B, Wang Q Y, Li Z, Wang L, Zhao L, He S, Peng Y, Liu X, Chen C, Yu L, Liu G, Dong X, Zhang J, Chen C, Xu Z, Hu J, Chen X, Ma X, Xue Q, Zhou X J 2012 Nature Commun. 3 931

    [95]

    He S, He J, Zhang W, Zhao L, Liu D, Liu X, Mou D, Ou Y B, Wang Q Y, Li Z, Wang L, Peng Y, Liu Y, Chen C, Yu L, Liu G, Dong X, Zhang J, Chen C, Xu Z, Chen X, Ma X, Xue Q, Zhou X J 2013 Nature Mater. 12 605

    [96]

    Zhang Y, Yang L X, Xu M, Ye Z R, Chen F, He C, Xu H C, Jiang J, Xie B P, Ying J J, Wang X F, Chen X H, Hu J P, Matsunami M, Kimura S, Feng D L 2011 Nature Mater. 10 273

    [97]

    Lei H, Hu R, Petrovic C 2011 Phys. Rev. B 84 014520

    [98]

    Claassen J H, Reeves M E, Soulen Jr R J 1991 Rev. Sci. Instrum. 62 996

    [99]

    Si W, Han S J, Shi X, Ehrlich S N, Jaroszynski J, Goyal A, Li Q 2013 Nature Commun. 4 1347

    [100]

    Gao Z, Ma Y, Yao C, Zhang X, Wang C, Wang D, Awaji S, Watanabe K 2012 Sci. Rep. 2 998

    [101]

    101 Kosterlitz J M, Thouless D J 1973 J. Phys. C: Solid St. Phys. 6 1181

    [102]

    Halperin B I, Nelson D R 1979 J. Low Temp. Phys. 36 599

    [103]

    Xing Y, Sun Y, Singh M, Zhao Y F, Chan M HW, Wang J 2013 Front. Phys. 8 491

  • [1] Zou Xing, Zhu Zhe, Fang Wen-Xiao. Simulation of surface stress and solid solution modification phase field of nanowire electrocaloric effect. Acta Physica Sinica, 2024, 73(10): 100501. doi: 10.7498/aps.73.20240105
    [2] Guo Lin, Yang Xiao-Fan, Cheng Er-Jian, Pan Bing-Lin, Zhu Chu-Chu, Li Shi-Yan. Pressure-induced superconductivity in triangular lattice spin liquid candidate NaYbSe2. Acta Physica Sinica, 2023, 72(15): 157401. doi: 10.7498/aps.72.20230730
    [3] Yu Ze-Hao, Zhang Li-Fa, Wu Jing, Zhao Yun-Shan. Recent progress of 2-dimensional layered thermoelectric materials. Acta Physica Sinica, 2023, 72(5): 057301. doi: 10.7498/aps.72.20222095
    [4] Xu Shuai, Yang Yun-Yun, Liu Xing, He Ji-Zhou. Performance optimization of three-terminal nanowire refrigerator based on one-dimensional ballistic conductor. Acta Physica Sinica, 2022, 71(2): 020501. doi: 10.7498/aps.71.20211077
    [5] Wang Hao-Lin, Zong Qi-Jun, Huang Yan, Chen Yi-Wei, Zhu Yu-Jian, Wei Ling-Nan, Wang Lei. Recent progress of transfer methods of two-dimensional atomic crystals and high-quality electronic devices. Acta Physica Sinica, 2021, 70(13): 138202. doi: 10.7498/aps.70.20210929
    [6] Chen Ya-Qi,  Xu Hua-Kai,  Tang Dong-Sheng,  Yu Fang,  Lei Le,  Ouyang Gang. Electrical transport properties and related mechanism of single SnO2 nanowire device. Acta Physica Sinica, 2018, 67(24): 246801. doi: 10.7498/aps.67.20181402
    [7] Bai Ji-Yuan, He Ze-Long, Li Li, Han Gui-Hua, Zhang Bin-Lin, Jiang Ping-Hui, Fan Yu-Huan. Electron transport through a two-terminal Aharonov-Bohm interferometer coupled with linear di-quantum dot molecules. Acta Physica Sinica, 2015, 64(20): 207304. doi: 10.7498/aps.64.207304
    [8] Zhang Zhao-Hui, Li Hai-Peng, Han Kui. Relations between the structure, symmetry and the energy mechanism of the polar-organic molecule ultra-films during the tribology. Acta Physica Sinica, 2013, 62(15): 158701. doi: 10.7498/aps.62.158701
    [9] Zhou Yu, Zhang La-Bao, Jia Tao, Zhao Qing-Yuan, Gu Min, Qiu Jian, Kang Lin, Chen Jian, Wu Pei-Heng. Response properties of NbN superconductor nanowire for multi-photon. Acta Physica Sinica, 2012, 61(20): 208501. doi: 10.7498/aps.61.208501
    [10] Shi Gao-Ming, Zou Zhi-Qiang, Sun Li-Min, Li Wei-Cong, Liu Xiao-Yong. Scanning tunneling mircroscopy and X-ray photoelectron spectroscopy studies of MnSi film and MnSi1.7 nanowires grown on Si substrates. Acta Physica Sinica, 2012, 61(22): 227301. doi: 10.7498/aps.61.227301
    [11] Ding Lei, Wang Cong, Chu Li-Hua, Na Yuan-Yuan, Yan Jun. Comprehensive Survey for the Frontier Disciplines Progress in lattice, magnetic and electronic transport properties of antiperovskite Mn3AX. Acta Physica Sinica, 2011, 60(9): 097507. doi: 10.7498/aps.60.097507
    [12] Zhang La-Bao, Kang Lin, Chen Jian, Zhao Qing-Yuan, Jia Tao, Xu Wei-Wei, Cao Chun-Hai, Jin Biao-Bing, Wu Pei-Heng. Fabrication of superconducting nanowiresingle-photon detector. Acta Physica Sinica, 2011, 60(3): 038501. doi: 10.7498/aps.60.038501
    [13] Zhong Chong-Gui, Jiang Qing, Fang Jing-Huai, Jiang Xue-Fan, Luo Li-Jin. Electric-field-induced magnetization in 1-3 type multiferroic nanocomposite thin film. Acta Physica Sinica, 2009, 58(10): 7227-7234. doi: 10.7498/aps.58.7227
    [14] Song Chao, Chen Gu-Ran, Xu Jun, Wang Tao, Sun Hong-Cheng, Liu Yu, Li Wei, Chen Kun-Ji. Properties of electric transport in crystallized silicon films under different annealing temperatures. Acta Physica Sinica, 2009, 58(11): 7878-7883. doi: 10.7498/aps.58.7878
    [15] Zeng Chun-Lai, Tang Dong-Sheng, Liu Xing-Hui, Hai Kuo, Yang Yi, Yuan Hua-Jun, Xie Si-Shen. Controllable preparation of SnO2 one-dimensional nanostructures by chemical vapor deposition. Acta Physica Sinica, 2007, 56(11): 6531-6536. doi: 10.7498/aps.56.6531
    [16] Tang Qiu-Wen, Shen Ming-Rong, Fang Liang. Comparison of temperature-dependent dielectric characteristic in two different (Ba,Sr)TiO3 films. Acta Physica Sinica, 2006, 55(3): 1346-1350. doi: 10.7498/aps.55.1346
    [17] Meng Fan-Bin, Hu Hai-Ning, Li Yang-Xian, Chen Gui-Feng, Chen Jing-Lan, Wu Guang-Heng. X-ray diffraction investigation of single-crystal Co nanowires. Acta Physica Sinica, 2005, 54(1): 384-388. doi: 10.7498/aps.54.384
    [18] Xiong Chang-Min, Sun Ji-Rong, Wang Deng-Jing, Shen Bao-Gen. Thickness and strain effects on electronic transport and Curie temperature in La_0.67Ca0.33MnO_3 films. Acta Physica Sinica, 2004, 53(11): 3909-3915. doi: 10.7498/aps.53.3909
    [19] XU BEI-XUE, WU JUN-LEI, LIU WEI-MIN, YANY HAI, SHAO QING-YI, LIU SHENG, XUE ZENG-QUAN, WU QUAN-DE. ENHANCED PHOTOEMISSION FROM METAL NANOPARTICLE COMPOSITE THIN FILMS (Ag-BaO) DOPED WITH RARE-EARTH ELEMENTS . Acta Physica Sinica, 2001, 50(5): 977-980. doi: 10.7498/aps.50.977
    [20] XU GANG-YI, WANG TIAN-MIN, HE YU-LIANG, MA ZHI-XUN, ZHENG GUO-ZHEN. THE TRANSPORT MECHANISM IN NANOCRYSTALLINE SILICON FILMS AT LOW TEMPERATURE. Acta Physica Sinica, 2000, 49(9): 1798-1803. doi: 10.7498/aps.49.1798
Metrics
  • Abstract views:  8105
  • PDF Downloads:  910
  • Cited By: 0
Publishing process
  • Received Date:  14 August 2015
  • Accepted Date:  21 October 2015
  • Published Online:  05 November 2015

/

返回文章
返回