-
It is of fundamental importance to investigate the evacuation process from a room with obstacles. The typical case is the evacuation of students from a classroom. Based on evacuation experiments from a classroom, the essential features of evacuee are concluded. In the original floor field model, the dynamic floor field is introduced in order to reflect the interaction among pedestrians. A pedestrian may follow the virtual trace of another one in front. The static floor field does not consider the influence of pedestrians. In this paper, the original dynamic floor field is ignored. These desks and chairs are treated as impassable and passable static obstacles, respectively. The static and passible obstacles, such as chairs, lead to the delay of movement of pedestrians. Furthermore, pedestrians are regarded as movable obstacles. The effect of static obstacles on floor field does not change with time. However, the effect of movable obstacles on floor field is dynamic. Therefore, the whole floor field is updated dynamically according to the movement of crowd. Pedestrians may try to find another uncongested path or exit when they find the crowd in front. It provides a better description of the influence of downstream congestions on upstream crowd. The cellular automaton model based on the dynamic floor field is used to investigate the evacuation process in the case of four layouts and three exit widths. The spatial distributions of evacuation time in different conditions and also the average and maximum evacuation times are obtained. Numerical simulations reproduce the evacuation process observed in the experiment quite well. The evacuation time depends on arrangement of these desks and the exit width. For a given layout, the smaller exit leads to longer evacuation time. It is found that the evacuation time does not decrease monotonically with increasing the number of aisles, which depends on the width of aisle as well. When the aisle is not wide enough, the conflict of pedestrians from both sides reduces the efficiency of evacuation. It is helpful for coping with crowd evacuation with an aisle close to the exit side of the wall. The reasons of the differences between experimental and simulation results are also discussed in more detail.
-
Keywords:
- cellular automata /
- floor field /
- pedestrian evacuation /
- maximum evacuation time
[1] Helbing D, Farkas I, Vicsek T 2000 Nature 407 487
[2] Helbing D, Buzna L, Johansson A, Werner T 2005 Transport. Sci. 39 1
[3] Helbing D, Isobe M, Nagatani T, Takimoto K 2003 Phys. Rev. E 67 067101
[4] Nagai R, Nagatani T, Isobe M, Adachi T 2004 Physica A 343 712
[5] Isobe M, Helbing D, Nagatani T 2004 Phys. Rev. E 69 066132
[6] Zhang J, Song W G, Xu X 2008 Physica A 387 5901
[7] Liu S B, Yang L Z, Fang T Y, Li J 2009 Physica A 388 1921
[8] Duan X Y, Dong L Y, Wang G Y, Wei Y F, Tian H H 2013 J. Shanghai Univ. 19 585 (in Chinese) [段晓茵, 董力耘, 王甘赟, 韦艳芳, 田欢欢 2013 上海大学学报(自然科学版) 19 585]
[9] Helbing D, Molnr P 1995 Phys. Rev.E 51 4282
[10] Yu W J, Chen R, Dong L Y, Dai S Q 2005 Phys. Rev. E 72 026112
[11] Muramatsu M, Irie T, Nagatani T 1999 Physica A 267 487
[12] Blue V J, Adler J L 2001 Transp. Res. B 35 293
[13] Burstedde C, Klauck K, Schadschneider A, Zittartz J 2001 Physica A 295 507
[14] Kirchner A, Schadschneider A 2002 Physica A 312 260
[15] Song W G, Yu Y F, Fan W C, Zhang H P 2005 Sci. China Ser E$ 35 725 (in Chinese) [宋卫国, 于彦飞, 范维澄, 张和平 2005 中国科学: E辑 35 725]
[16] Varas A, Cornejo M D, Mainemer D, Toledo B, Rogan J, Munoz V, Valdivia J A 2007 Physica A 382 631
[17] Huang H J, Guo R Y 2008 Phys. Rev. E 78 021131
[18] Guo R Y, Huang H J 2010 Chin. Phys. B 19 030501
[19] Zhu K J, Yang L Z 2010 Acta Phys. Sin. 59 7701 (in Chinese) [朱孔金, 杨立中 2010 物理学报 59 7701]
[20] Alizadeh R 2011 Safety Sci. 49 315
[21] Guo R Y, Huang H J 2011 J. Stat. Mech. P04018
[22] Chen L, Guo R Y, Ta N 2013 Acta Phys. Sin. 62 050506 (in Chinese) [陈亮, 郭仁拥, 塔娜 2013 物理学报 62 050506]
[23] Tian H H, Dong L Y, Xue Y 2015 Physica A 420 164
-
[1] Helbing D, Farkas I, Vicsek T 2000 Nature 407 487
[2] Helbing D, Buzna L, Johansson A, Werner T 2005 Transport. Sci. 39 1
[3] Helbing D, Isobe M, Nagatani T, Takimoto K 2003 Phys. Rev. E 67 067101
[4] Nagai R, Nagatani T, Isobe M, Adachi T 2004 Physica A 343 712
[5] Isobe M, Helbing D, Nagatani T 2004 Phys. Rev. E 69 066132
[6] Zhang J, Song W G, Xu X 2008 Physica A 387 5901
[7] Liu S B, Yang L Z, Fang T Y, Li J 2009 Physica A 388 1921
[8] Duan X Y, Dong L Y, Wang G Y, Wei Y F, Tian H H 2013 J. Shanghai Univ. 19 585 (in Chinese) [段晓茵, 董力耘, 王甘赟, 韦艳芳, 田欢欢 2013 上海大学学报(自然科学版) 19 585]
[9] Helbing D, Molnr P 1995 Phys. Rev.E 51 4282
[10] Yu W J, Chen R, Dong L Y, Dai S Q 2005 Phys. Rev. E 72 026112
[11] Muramatsu M, Irie T, Nagatani T 1999 Physica A 267 487
[12] Blue V J, Adler J L 2001 Transp. Res. B 35 293
[13] Burstedde C, Klauck K, Schadschneider A, Zittartz J 2001 Physica A 295 507
[14] Kirchner A, Schadschneider A 2002 Physica A 312 260
[15] Song W G, Yu Y F, Fan W C, Zhang H P 2005 Sci. China Ser E$ 35 725 (in Chinese) [宋卫国, 于彦飞, 范维澄, 张和平 2005 中国科学: E辑 35 725]
[16] Varas A, Cornejo M D, Mainemer D, Toledo B, Rogan J, Munoz V, Valdivia J A 2007 Physica A 382 631
[17] Huang H J, Guo R Y 2008 Phys. Rev. E 78 021131
[18] Guo R Y, Huang H J 2010 Chin. Phys. B 19 030501
[19] Zhu K J, Yang L Z 2010 Acta Phys. Sin. 59 7701 (in Chinese) [朱孔金, 杨立中 2010 物理学报 59 7701]
[20] Alizadeh R 2011 Safety Sci. 49 315
[21] Guo R Y, Huang H J 2011 J. Stat. Mech. P04018
[22] Chen L, Guo R Y, Ta N 2013 Acta Phys. Sin. 62 050506 (in Chinese) [陈亮, 郭仁拥, 塔娜 2013 物理学报 62 050506]
[23] Tian H H, Dong L Y, Xue Y 2015 Physica A 420 164
Catalog
Metrics
- Abstract views: 7913
- PDF Downloads: 434
- Cited By: 0