Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Polarized properties of typical surface types over China based on the multi-angular polarized remote sensing measurements

Xiang Kun-Sheng Cheng Tian-Hai Gu Xing-Fa Guo Hong Chen Hao Wang Ying Wei Xi Bao Fang-Wen

Citation:

Polarized properties of typical surface types over China based on the multi-angular polarized remote sensing measurements

Xiang Kun-Sheng, Cheng Tian-Hai, Gu Xing-Fa, Guo Hong, Chen Hao, Wang Ying, Wei Xi, Bao Fang-Wen
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The surface polarized reflectance is able to fully reflect the physical characteristics of surface, such as vegetation classification, plant biomass estimation, leaf angle distribution and surface water content. The bidirectional polarization distribution function is a useful tool for quantitatively describing the surface polarized reflectance. The multi-angle polarized remote sensing reveals a significant advantage in capturing the radiation and polarization information. The polarization and directionality of the earth reflectance (POLDER) instrument is the only sensor which has provided a long-term trend of polarized measurements. Its combination of multi-spectral, polarization and multi-angle observations has considerable capability for retrieving ocean, land, cloud and aerosol properties. Until now, data obtained from POLDER has been widely used to study various surface bidirectional polarized reflectance models, especially Nadal model. However, parameters of Nadal model reveal a low accuracy in China region. In this study, the parameters of Nadal model suitable for China region are obtained and analyzed based on the POLDER-2 polarized reflectance data. Based on the modified parameters of Nadal model, polarized reflectance under different surface types is further analyzed. Our results show that the polarized reflectance retrieved from modified parameters of Nadal model reveals better correlation with the POLDER-2 products than the polarized reflectance from Nadal official parameters under different surface types. The polarization properties of three typical surfaces (forest, grassland and desert) are further investigated and reveal that 1) different surface polarized reflectances decrease with the increase of the scattering angle, and the polarized reflectance of the same object decreases as the normalized difference vegetation index increases; 2) significant discrepancies exist between the polarized reflectances of different surfaces, the polarized reflectance of forest is the lowest in the three surface types, then that of grass is the second lowest, and desert reveal the largest value (about twice that of forest), 3) the discrepancies of polarized reflectance between different surfaces have an increasing trend as satellite view zenith angle increases. This study will provide a priori knowledge for the detection of surface polarization properties and aerosol parameters based on multi-angle polarization remote sensing data, and also establish a good foundation for the quantitative applications of GF-5 satellite multi-angle polarization imager to be launched soon in China.
      Corresponding author: Cheng Tian-Hai, chength@radi.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 41371015, 41001207) and the National Basic Research Program of China (Grant No. 2010CB950800).
    [1]

    Curran P J 1981 Remote Sens. Environ. 11 87

    [2]

    Rondeaux G, Herman M 1991 Remote Sens. Environ. 38 63

    [3]

    Curran P J 1978 Remote Sens. Environ. 7 305

    [4]

    Herman M, Deuz J L, Devaux C, Goloub P, Bron F M, Tanr D 1997 J. Geophys. Res. 102 17039

    [5]

    Deuz J L, Goloub P, Herman M, Marchand A, Perry G, Susana S, Tanr D 2000 J. Geophys. Res. 105 15329

    [6]

    Deuz J L, Bron F M, Devaux C, Goloub P, Herman M, Lafrance B, Maignan F, Marchand A, Nadal F, Perry G, Tanr D 2001 J. Geophys. Res. 106 4913

    [7]

    Cheng T H, Gu X F, Chen L F, Yu T, Tian G L 2010 J. Atmos. Sci. 67 749

    [8]

    Peers F, Waquet F, Cornet C, Dubuisson P, Ducos F, Goloub P, Szczap F, Tanr D, Thieuleux F 2015 Atmos. Chem. Phys. 15 4179

    [9]

    Stap F A, Hasekamp O P, Rckmann T 2015 Atmos. Meas. Tech. 8 1287

    [10]

    Bron F M, Tanre D, Lecomte P, Herman M 1995 IEEE Trans. Geosci. Remote 33 487

    [11]

    Nadal F, Bron F M 1999 IEEE Trans. Geosci. Remote 37 1709

    [12]

    Maignan F, Bron F M, Fdlea E, Bouvier M 2009 Remote Sens. Environ. 113 2642

    [13]

    Litvinov P, Hasekamp O, Cairns B 2011 Remote Sens. Environ. 115 781

    [14]

    Zhao Y S, Huang F, Jin L, Jin X F, Zhou S X 2000 J. Remote Sens. 4 131 (in Chinese) [赵云升, 黄方, 金伦, 金锡锋, 周淑香 2000 遥感学报 4 131]

    [15]

    Zhao Y S, Jin L, Zhang H B, Song K S 2000 J. Northeast Norm. Univ. (Nat. Sci.) 32 93 (in Chinese) [赵云升, 金伦, 张洪波, 宋开山 2000 东北师大学报 (自然科学版) 32 93]

    [16]

    Zhao Y S, Jin L, Song K S, Wang W M 2000 J. Northeast Norm. Univ. (Nat. Sci.) 32 103 (in Chinese) [赵云升, 金伦, 宋开山, 王维民 2000 东北师大学报 (自然科学版) 32 103]

    [17]

    Zhao Y S, Wu T X, Song K S, Jia L, Zhao L L 2005 Min. Res. Dev. 25 63 (in Chinese) [赵云升, 吴太夏, 宋开山, 贾玲, 赵丽丽 2005 矿业研究与开发 25 63]

    [18]

    Zhao H 2004 Ph. D. Dissertation (Beijing: Peking University) (in Chinese) [赵虎 2004 博士学位论文 (北京: 北京大学)]

    [19]

    Xie D H, Gu X F, Cheng T H, Yu T, Li Z Q, Chen X F, Chen H, Guo J 2011 Sci. China: Earth Sci. 54 1199

    [20]

    Xie D H, Gu X F, Cheng T H, Yu T, Li Z Q, Chen X F, Chen H, Guo J 2012 Acta Phys. Sin. 61 077801 (in Chinese) [谢东海, 顾行发, 程天海, 余涛, 李正强, 陈兴峰, 陈好, 郭靖 2012 物理学报 61 077801]

    [21]

    Wang H, Sun X B, Sun B, Hong J 2014 Acta Opt. Sin. 34 0128002 (in Chinese) [王涵, 孙晓兵, 孙斌, 洪津 2014 光学学报 34 0128002]

    [22]

    Zhao Z J, Zhao Y S 2014 Acta Phys. Sin. 63 187801 (in Chinese) [赵子傑, 赵云升 2014 物理学报 63 187801]

    [23]

    Loveland T R, Belward A S 1997 Int. J. Remote Sens. 18 3289

  • [1]

    Curran P J 1981 Remote Sens. Environ. 11 87

    [2]

    Rondeaux G, Herman M 1991 Remote Sens. Environ. 38 63

    [3]

    Curran P J 1978 Remote Sens. Environ. 7 305

    [4]

    Herman M, Deuz J L, Devaux C, Goloub P, Bron F M, Tanr D 1997 J. Geophys. Res. 102 17039

    [5]

    Deuz J L, Goloub P, Herman M, Marchand A, Perry G, Susana S, Tanr D 2000 J. Geophys. Res. 105 15329

    [6]

    Deuz J L, Bron F M, Devaux C, Goloub P, Herman M, Lafrance B, Maignan F, Marchand A, Nadal F, Perry G, Tanr D 2001 J. Geophys. Res. 106 4913

    [7]

    Cheng T H, Gu X F, Chen L F, Yu T, Tian G L 2010 J. Atmos. Sci. 67 749

    [8]

    Peers F, Waquet F, Cornet C, Dubuisson P, Ducos F, Goloub P, Szczap F, Tanr D, Thieuleux F 2015 Atmos. Chem. Phys. 15 4179

    [9]

    Stap F A, Hasekamp O P, Rckmann T 2015 Atmos. Meas. Tech. 8 1287

    [10]

    Bron F M, Tanre D, Lecomte P, Herman M 1995 IEEE Trans. Geosci. Remote 33 487

    [11]

    Nadal F, Bron F M 1999 IEEE Trans. Geosci. Remote 37 1709

    [12]

    Maignan F, Bron F M, Fdlea E, Bouvier M 2009 Remote Sens. Environ. 113 2642

    [13]

    Litvinov P, Hasekamp O, Cairns B 2011 Remote Sens. Environ. 115 781

    [14]

    Zhao Y S, Huang F, Jin L, Jin X F, Zhou S X 2000 J. Remote Sens. 4 131 (in Chinese) [赵云升, 黄方, 金伦, 金锡锋, 周淑香 2000 遥感学报 4 131]

    [15]

    Zhao Y S, Jin L, Zhang H B, Song K S 2000 J. Northeast Norm. Univ. (Nat. Sci.) 32 93 (in Chinese) [赵云升, 金伦, 张洪波, 宋开山 2000 东北师大学报 (自然科学版) 32 93]

    [16]

    Zhao Y S, Jin L, Song K S, Wang W M 2000 J. Northeast Norm. Univ. (Nat. Sci.) 32 103 (in Chinese) [赵云升, 金伦, 宋开山, 王维民 2000 东北师大学报 (自然科学版) 32 103]

    [17]

    Zhao Y S, Wu T X, Song K S, Jia L, Zhao L L 2005 Min. Res. Dev. 25 63 (in Chinese) [赵云升, 吴太夏, 宋开山, 贾玲, 赵丽丽 2005 矿业研究与开发 25 63]

    [18]

    Zhao H 2004 Ph. D. Dissertation (Beijing: Peking University) (in Chinese) [赵虎 2004 博士学位论文 (北京: 北京大学)]

    [19]

    Xie D H, Gu X F, Cheng T H, Yu T, Li Z Q, Chen X F, Chen H, Guo J 2011 Sci. China: Earth Sci. 54 1199

    [20]

    Xie D H, Gu X F, Cheng T H, Yu T, Li Z Q, Chen X F, Chen H, Guo J 2012 Acta Phys. Sin. 61 077801 (in Chinese) [谢东海, 顾行发, 程天海, 余涛, 李正强, 陈兴峰, 陈好, 郭靖 2012 物理学报 61 077801]

    [21]

    Wang H, Sun X B, Sun B, Hong J 2014 Acta Opt. Sin. 34 0128002 (in Chinese) [王涵, 孙晓兵, 孙斌, 洪津 2014 光学学报 34 0128002]

    [22]

    Zhao Z J, Zhao Y S 2014 Acta Phys. Sin. 63 187801 (in Chinese) [赵子傑, 赵云升 2014 物理学报 63 187801]

    [23]

    Loveland T R, Belward A S 1997 Int. J. Remote Sens. 18 3289

  • [1] Deng Shan-shan, Song Ping, Liu Xiao-he, Yao Sen, Zhao Qian-yi. The magnetic susceptibility of Mn3Sn single crystal is enhanced under GPa-level uniaxial stress. Acta Physica Sinica, 2024, 0(0): . doi: 10.7498/aps.73.20240287
Metrics
  • Abstract views:  4951
  • PDF Downloads:  271
  • Cited By: 0
Publishing process
  • Received Date:  08 June 2015
  • Accepted Date:  24 July 2015
  • Published Online:  05 November 2015

/

返回文章
返回