Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Analyses of the influences of molecular vacancy defect on the geometrical structure, electronic structure and vibration characteristics of Hexogeon energetic material

Peng Ya-Jing Jiang Yan-Xue

Peng Ya-Jing, Jiang Yan-Xue. Analyses of the influences of molecular vacancy defect on the geometrical structure, electronic structure and vibration characteristics of Hexogeon energetic material. Acta Phys. Sin., 2015, 64(24): 243102. doi: 10.7498/aps.64.243102
Citation: Peng Ya-Jing, Jiang Yan-Xue. Analyses of the influences of molecular vacancy defect on the geometrical structure, electronic structure and vibration characteristics of Hexogeon energetic material. Acta Phys. Sin., 2015, 64(24): 243102. doi: 10.7498/aps.64.243102

Analyses of the influences of molecular vacancy defect on the geometrical structure, electronic structure and vibration characteristics of Hexogeon energetic material

Peng Ya-Jing, Jiang Yan-Xue
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Micro-defects in an energetic material is an important factor for the formation of “hot spots” and successive explosive detonation. However, an understanding of the micro-mechanism of forming “hot spots” is limited and the development and application of energetic materials are hindered due to the less knowledge of micro-defects inside the materials. In order to understand the characteristics of micro-defects and explore the basic mechanism of forming “hot spots” caused by defects, the effects of molecular vacancy defect on the geometrical structure, electronic structure and vibration characteristics of Hexogeon (RDX) energetic materials are studied using the first-principle method, and the basic formation mechanism of initial “hot spot” is discussed. The effects of molecular vacancy defect on the RDX geometrical structure, electronic band structure, electronic density of states and frontier molecular orbitals are analyzed using the periodic model, while the influences of molecular vacancy defect on the vibration characteristics of RDX systems are calculated using the cluster model. Infrared vibration spectra and vibration characteristics of the internal molecules at the same vibration frequency for the perfect and defective RDX systems are obtained. It is found that vacancy defect makes the N–N bond near the defect long, and the molecular structure loose; some degenerate energy levels in the conduction band present separation and the electronic density of states decreases; the bottom of the conduction band and the top of the valence band contributed by N-2p and O-2p orbitals shift to the Fermi surface, which reduces the energy band gap and increases the activity of system. At the same time, the calculations of the frontier molecular orbitals and the infrared vibration spectra show that the molecular defect makes the charge distributions of highest occupied moleculer orbital concentrated mainly in the molecule near the defect, and the C–H and N–N bond energies decrease. For the defective system, some molecules around vacancy have large vibration amplitude towards the vacancy direction. This will be likely to cause hole to collapse and realize the conversion of energy. These characteristics indicate that the presence of molecular vacancy defect causes the energy band gap to decrease, the structures of the molecules near the defect become loose, the charge distribution increases and the reaction activity augments. When the defective system is loaded by external energy, the molecules near the defect are expected to be unstable. The C–H or N–N bonds in those molecules are more prone to rupture to cause chemical reaction and release of energy, which is expected to be responsible for the forming of “hot spot”. These results provide some basic micro-information about revealing the formation mechanism of “hot spots” caused by molecular vacancy defects
      PACS:
      31.15.es(Applications of density-functional theory (e.g., to electronic structure and stability; defect formation; dielectric properties, susceptibilities; viscoelastic coefficients; Rydberg transition frequencies))
      71.20.-b(Electron density of states and band structure of crystalline solids)
      78.30.-j(Infrared and Raman spectra)
      Corresponding author: Peng Ya-Jing, pengyajing@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 21203012), the Liaoning Excellent Talents Program, China (Grant No. LJQ2013118), and the Foundation of State Key Laboratory of Explosion Science and Technology of Beijing Institute of Technology, China (Grant No. KFJJ14-08M).
    [1]

    Bouma R H, Duvalois W, van der Heijden A E 2013 J. Microscopy 252 263

    [2]

    LaBarbera D A, Zikry M A 2013 J. Appl. Phys. 113 243502

    [3]

    Guo F, Zhang H, Hu H Q, Cheng X L 2014 Chin. Phys. B 23 046501

    [4]

    Peng Y J, Liu Y Q, Wang Y H, Zhang S P, Yang Y Q 2009 Acta Phys. Sin. 58 655 (in Chinese) [彭亚晶, 刘玉强, 王英惠, 张淑平, 杨延强 2009 物理学报 58 655]

    [5]

    Wang W T, Hu B, Wang M W 2013 Acta Phys. Sin. 62 060601 (in Chinese) [王文亭, 胡冰, 王明伟 2013 物理学报 62 060601]

    [6]

    Boyd S, Murray J S, Politzer P 2009 J. Chem. Phys. 131 204903

    [7]

    Schackelford S A 2008 Central Europ. J. Energ. Mater. 5 75

    [8]

    Brill T B, James K 1993 Chem. Rev. 93 2667

    [9]

    Walley S M, Field J E, Greenaway M W 2006 Mater. Sci. Technol. 22 402

    [10]

    Duan X H, Li W P, Pei C H, et al. 2013 J. Mol. Model. 19 3893

    [11]

    Margetis D, Kaxiras E, Elstner M, Frauenheim T, Manaa M R 2002 J. Chem. Phys. 117 788

    [12]

    Brown J A, LaBarbera D A, Zikry M A 2014 Model. Simul. Mater. Sci. Eng. 22 055013

    [13]

    Liu Z C, Wu Q, Zhu W H, Xiao H M 2015 Phys. Chem. Chem. Phys. 17 10568

    [14]

    Kuklja M M, Kunz A B 1999 J. Phys. Chem. B 103 8427

    [15]

    Kuklja M M, Kunz A B 2000 J. Phys. Chem. Solids 61 35

    [16]

    Kuklja M M, Stefanovich E V, Kunz A B 2000 J. Chem. Phys. 112 3417

    [17]

    Tsai D H 1991 J. Chem. Phys. 95 7497

    [18]

    Kuklja M M 2014 Adv. Quantum Chem. 69 71

    [19]

    Kuklja M M, Kunz A B 2000 J. Appl. Phys. 87 2215

    [20]

    Rice B M, Chabalowski C F 1997 J. Phys. Chem. A 46 8720

    [21]

    Choi C S, Prince E 1972 Acta Cryst. B 28 2857

    [22]

    Cheng H P, Dan J K, Huang Z M, Peng H, Chen G H 2013 Acta Phys. Sin. 62 163102 (in Chinese) [程和平, 但加坤, 黄智蒙, 彭辉, 陈光华 2013 物理学报 62 163102]

    [23]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [24]

    Whitley V H 2005 Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed. Matter Baltimore, Maryland, USA, July 31-August 5, 2005 p1357

    [25]

    Pan Q, Zheng L 2007 Chin. J. Energ. Mater. 15 676 (in Chinese) [潘清, 郑林 2007 含能材料 15 676]

    期刊类型引用(7)

    1. 彭亚晶,孙爽,刘伟娜,刘宇辉. 冲击加载下环三亚甲基三硝胺的初始动态响应及反应机理. 物理学报. 2021(15): 298-306 . 百度学术
    2. 杭贵云,余文力,王涛,王金涛,苗爽. 奥克托今/3-硝基-1, 2, 4-三唑-5-酮共晶炸药晶体缺陷的分子动力学研究. 兵工学报. 2019(01): 49-57 . 百度学术
    3. 杭贵云,余文力,王涛,王金涛,苗爽. 分子动力学法研究掺杂缺陷对HMX/NQ共晶炸药性能的影响. 火炸药学报. 2019(02): 145-151 . 百度学术
    4. 金韶华,李土娟,王雨乔,陈煜,张晓鹏,王俊峰,李领弟. 重结晶LLM-105的热危险性分析. 安全与环境学报. 2019(03): 854-861 . 百度学术
    5. 苗爽,王涛,王玉玲,杭贵云,戚春保,鲁昌兵. 晶体缺陷对HMX基PBX性能影响的理论计算. 含能材料. 2019(08): 636-643 . 百度学术
    6. 苗爽,张雷,王涛,王玉玲,杭贵云,梅宗书. RDX杂质对HMX性能影响的分子动力学研究. 含能材料. 2018(10): 828-834 . 百度学术
    7. 苗爽,王涛,王玉玲,曹智,夏琦. 掺杂缺陷对PBX性能影响的分子动力学研究. 固体火箭技术. 2018(06): 727-731+739 . 百度学术

    其他类型引用(0)

  • [1]

    Bouma R H, Duvalois W, van der Heijden A E 2013 J. Microscopy 252 263

    [2]

    LaBarbera D A, Zikry M A 2013 J. Appl. Phys. 113 243502

    [3]

    Guo F, Zhang H, Hu H Q, Cheng X L 2014 Chin. Phys. B 23 046501

    [4]

    Peng Y J, Liu Y Q, Wang Y H, Zhang S P, Yang Y Q 2009 Acta Phys. Sin. 58 655 (in Chinese) [彭亚晶, 刘玉强, 王英惠, 张淑平, 杨延强 2009 物理学报 58 655]

    [5]

    Wang W T, Hu B, Wang M W 2013 Acta Phys. Sin. 62 060601 (in Chinese) [王文亭, 胡冰, 王明伟 2013 物理学报 62 060601]

    [6]

    Boyd S, Murray J S, Politzer P 2009 J. Chem. Phys. 131 204903

    [7]

    Schackelford S A 2008 Central Europ. J. Energ. Mater. 5 75

    [8]

    Brill T B, James K 1993 Chem. Rev. 93 2667

    [9]

    Walley S M, Field J E, Greenaway M W 2006 Mater. Sci. Technol. 22 402

    [10]

    Duan X H, Li W P, Pei C H, et al. 2013 J. Mol. Model. 19 3893

    [11]

    Margetis D, Kaxiras E, Elstner M, Frauenheim T, Manaa M R 2002 J. Chem. Phys. 117 788

    [12]

    Brown J A, LaBarbera D A, Zikry M A 2014 Model. Simul. Mater. Sci. Eng. 22 055013

    [13]

    Liu Z C, Wu Q, Zhu W H, Xiao H M 2015 Phys. Chem. Chem. Phys. 17 10568

    [14]

    Kuklja M M, Kunz A B 1999 J. Phys. Chem. B 103 8427

    [15]

    Kuklja M M, Kunz A B 2000 J. Phys. Chem. Solids 61 35

    [16]

    Kuklja M M, Stefanovich E V, Kunz A B 2000 J. Chem. Phys. 112 3417

    [17]

    Tsai D H 1991 J. Chem. Phys. 95 7497

    [18]

    Kuklja M M 2014 Adv. Quantum Chem. 69 71

    [19]

    Kuklja M M, Kunz A B 2000 J. Appl. Phys. 87 2215

    [20]

    Rice B M, Chabalowski C F 1997 J. Phys. Chem. A 46 8720

    [21]

    Choi C S, Prince E 1972 Acta Cryst. B 28 2857

    [22]

    Cheng H P, Dan J K, Huang Z M, Peng H, Chen G H 2013 Acta Phys. Sin. 62 163102 (in Chinese) [程和平, 但加坤, 黄智蒙, 彭辉, 陈光华 2013 物理学报 62 163102]

    [23]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [24]

    Whitley V H 2005 Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed. Matter Baltimore, Maryland, USA, July 31-August 5, 2005 p1357

    [25]

    Pan Q, Zheng L 2007 Chin. J. Energ. Mater. 15 676 (in Chinese) [潘清, 郑林 2007 含能材料 15 676]

  • [1] Liu Dong-Jing, Zhou Fu, Hu Zhi-Liang, Huang Jia-Qiang. Molecular dynamics study of interfacial thermal transport properties of graphene/GaN heterostructure. Acta Physica Sinica, 2024, 73(13): 137901. doi: 10.7498/aps.73.20240021
    [2] Zhang Jian-Wei, Niu Ying, Yan Run-Qi, Zhang Rong-Qi, Cao Meng, Li Yong-Dong, Liu Chun-Liang, Zhang Jia-Wei. Analysis of effect of bulk vacancy defect on secondary electron emission characteristics of Al2O3. Acta Physica Sinica, 2024, 73(15): 157902. doi: 10.7498/aps.73.20240577
    [3] Liu Dong-Jing, Zhou Fu, Chen Shuai-Yang, Hu Zhi-Liang. Molecular dynamics of heat transport properties at gallium nitride/graphene/silicon carbide heterointerface. Acta Physica Sinica, 2023, 72(15): 157901. doi: 10.7498/aps.72.20230537
    [4] Liu Dong-Jing, Wang Shao-Ming, Yang Ping. Thermal property of graphene/silicon carbide heterostructure by molecular dynamics simulation. Acta Physica Sinica, 2021, 70(18): 187302. doi: 10.7498/aps.70.20210613
    [5] Huang Wen-Jun, Wang Ya-Ping, Cao Xin-Rui, Wu Shun-Qing, Zhu Zi-Zhong. Electronic structures and defect properties of lithium-rich manganese-based ternary material Li1.208Ni0.333Co0.042Mn0.417O2. Acta Physica Sinica, 2021, 70(20): 208201. doi: 10.7498/aps.70.20210398
    [6] Peng Ya-Jing, Sun Shuang, Liu Wei-Na, Liu Yu-Hui. Initial dynamic response and reaction mechanism of cyclotrimethylenetrinitramine under shock loading. Acta Physica Sinica, 2021, 70(15): 158202. doi: 10.7498/aps.70.20201279
    [7] Chong Tao, Mo Jian-Jun, Zheng Xian-Xu, Fu Hua, Zhao Jian-Heng, Cai Jin-Tao. Dynamic behaviors of RDX single crystal under ramp compression. Acta Physica Sinica, 2020, 69(17): 176101. doi: 10.7498/aps.69.20200318
    [8] Yan Xiao-Tong, Hou Yu-Hua, Zheng Shou-Hong, Huang You-Lin, Tao Xiao-Ma. First-principles study of effects of Ga, Ge and As doping on electrochemical properties and electronic structure of Li2CoSiO4 serving as cathode material for Li-ion batteries. Acta Physica Sinica, 2019, 68(18): 187101. doi: 10.7498/aps.68.20190503
    [9] Peng Ya-Jing, Sun Shuang, Song Yun-Fei, Yang Yan-Qiang. Coherent anti-Stokes Raman scattering spectrum of vibrational properties of liquid nitromethane molecules. Acta Physica Sinica, 2018, 67(2): 024208. doi: 10.7498/aps.67.20171828
    [10] Lan Sheng, Li Kun, Gao Xin-Yun. Based on the molecular dynamics characteristic research of heat conduction of graphyne nanoribbons with vacancy defects. Acta Physica Sinica, 2017, 66(13): 136801. doi: 10.7498/aps.66.136801
    [11] Wei Zhe, Yuan Jian-Mei, Li Shun-Hui, Liao Jian, Mao Yu-Liang. Density functional study on the electronic and magnetic properties of two-dimensional hexagonal boron nitride containing vacancy. Acta Physica Sinica, 2013, 62(20): 203101. doi: 10.7498/aps.62.203101
    [12] Wang Wen-Ting, Hu Bing, Wang Ming-Wei. Femtosecond laser fine machining of energetic materials. Acta Physica Sinica, 2013, 62(6): 060601. doi: 10.7498/aps.62.060601
    [13] Li Jian-Hua, Zeng Xiang-Hua, Ji Zheng-Hua, Hu Yi-Pei, Chen Bao, Fan Yu-Pei. Electronic structure and optical properties of Ag-doping and Zn vacancy impurities in ZnS. Acta Physica Sinica, 2011, 60(5): 057101. doi: 10.7498/aps.60.057101
    [14] Chen Qing-Yun, Xu Ming, Lu Tie-Cheng, Meng Chuan-Min, Hu You-Wen. The structures and properties of Ge nanocrystals before and after Neutron transmutation doping. Acta Physica Sinica, 2010, 59(9): 6473-6479. doi: 10.7498/aps.59.6473
    [15] Ouyang Fang-Ping, Xu Hui, Lin Feng. The electronic structure and transport properties ofgraphene nanoribbons with divacancies defects. Acta Physica Sinica, 2009, 58(6): 4132-4136. doi: 10.7498/aps.58.4132
    [16] Peng Ya-Jing, Liu Yu-Qiang, Wang Ying-Hui, Zhang Shu-Ping, Yang Yan-Qiang. Thermal dynamic analysis of picosecond and nanosecond single pulse laser flash-heating of Al/NC nanoenergetic composites. Acta Physica Sinica, 2009, 58(1): 655-661. doi: 10.7498/aps.58.655
    [17] Yuan Jian-Hui, Cheng Yu-Min, Zhang Zhen-Hua. Effects of vacancy structural defects on the elastic properties of carbon nanotubes. Acta Physica Sinica, 2009, 58(4): 2578-2584. doi: 10.7498/aps.58.2578
    [18] Ouyang Fang-Ping, Wang Huan-You, Li Ming-Jun, Xiao Jin, Xu Hui. Study on electronic structure and transport properties of graphene nanoribbons with single vacancy defects. Acta Physica Sinica, 2008, 57(11): 7132-7138. doi: 10.7498/aps.57.7132
    [19] Ouyang Fang-Ping, Xu Hui, Wei Chen. First-principles study of electronic structure and transport properties of zigzag graphene nanoribbons. Acta Physica Sinica, 2008, 57(2): 1073-1077. doi: 10.7498/aps.57.1073
    [20] Liu Ting-Yu, Zhang Qi-Ren, Zhuang Song-Lin. Optical polarized properties for the PbWO4 crystal containing lead vacancy. Acta Physica Sinica, 2005, 54(8): 3780-3786. doi: 10.7498/aps.54.3780
  • 期刊类型引用(7)

    1. 彭亚晶,孙爽,刘伟娜,刘宇辉. 冲击加载下环三亚甲基三硝胺的初始动态响应及反应机理. 物理学报. 2021(15): 298-306 . 百度学术
    2. 杭贵云,余文力,王涛,王金涛,苗爽. 奥克托今/3-硝基-1, 2, 4-三唑-5-酮共晶炸药晶体缺陷的分子动力学研究. 兵工学报. 2019(01): 49-57 . 百度学术
    3. 杭贵云,余文力,王涛,王金涛,苗爽. 分子动力学法研究掺杂缺陷对HMX/NQ共晶炸药性能的影响. 火炸药学报. 2019(02): 145-151 . 百度学术
    4. 金韶华,李土娟,王雨乔,陈煜,张晓鹏,王俊峰,李领弟. 重结晶LLM-105的热危险性分析. 安全与环境学报. 2019(03): 854-861 . 百度学术
    5. 苗爽,王涛,王玉玲,杭贵云,戚春保,鲁昌兵. 晶体缺陷对HMX基PBX性能影响的理论计算. 含能材料. 2019(08): 636-643 . 百度学术
    6. 苗爽,张雷,王涛,王玉玲,杭贵云,梅宗书. RDX杂质对HMX性能影响的分子动力学研究. 含能材料. 2018(10): 828-834 . 百度学术
    7. 苗爽,王涛,王玉玲,曹智,夏琦. 掺杂缺陷对PBX性能影响的分子动力学研究. 固体火箭技术. 2018(06): 727-731+739 . 百度学术

    其他类型引用(0)

Metrics
  • Abstract views:  7279
  • PDF Downloads:  177
  • Cited By: 7
Publishing process
  • Received Date:  07 August 2015
  • Accepted Date:  01 October 2015
  • Published Online:  05 December 2015

/

返回文章
返回