Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Andreev reflection in a T-shaped double quantum-dot with coupled Majorana bound states

Wang Su-Xin Li Yu-Xian Wang Ning Liu Jian-Jun

Citation:

Andreev reflection in a T-shaped double quantum-dot with coupled Majorana bound states

Wang Su-Xin, Li Yu-Xian, Wang Ning, Liu Jian-Jun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Owing to their potential applications in topological quantum computation and because of their fundamental interest, Majorana fermions are currently attracting increasing attention. Numerous theoretical and experimental studies exactly show that the quantum dot (QD) structure is a good candidate for the detection of Majorana bound state (MBSs). QD system has many unique transport properties and interesting quantum phenomena, such as quantum interference effect, Fano effect, etc. In addition, compared with a single QD, a coupled QD structure has many adjustable parameters, and thus has more important theoretical and practical value, which provides an excellent platform to detect MBSs. In addition, QD coupled with normal metallic conductor and with superconducting electrode structure exhibits interesting transport properties. One of these properties is the so-called Andreev reflection (AR). Especially, in the subgap regime, the current almost entirely originates from the anomalous Andreev channel; such spectroscopy can thus directly probe any in-gap state. In the present paper, we consider a T-shaped double QD structure with side-coupled to MBSs and investigate the transport properties through the system by adding a normal and a superconducting lead. We calculate the AR conductance through the system in the subgap transport. Here we focus on the effects of MBSs on AR through the system. We find that the AR conductance presents a resonant peak around zero Fermi energy when only one QD (QD1) connects to metal and superconducting leads. As a consequence of quantum interference, when using another QD2 side-attached to QD1, a pair of new Fano-type resonant peaks appear and is distributed aside the zero point and the Fano antiresonant point is at the energy level of the QD2. If an MBS is introduced to couple to QD2, the AR conductance shows several new features. First, a pair of new Fano-type resonance curves appears and the original ones also persist except for the position shifting. In addition, the AR conductance value at the zero Fermi energy point is exactly equal to 1/2G0(G0=2e2/h) in the presence of QD-MBS coupling and zero inter-MBS coupling, which is not dependent on the inert-dot coupling nor the energy levels of QD nor the strength of the QD-MBS coupling. This feature is different from which the T-shaped DQD structure side-coupled to a traditional fermions, showing the robust properties of the Majorana fermions. We also show that in the Andreev reflection conductance curves appear resonance zone changes into antiresonance near zero Fermi energy by adjusting the coupling strength between the double quantum dots in the system without MBSs, while the antiresonance disappears and new resonance peaks appear if an MBS is introduced to couple to QD2. We hope that these results will be helpful for understanding the quantum interference in MBS-assisted AR and may find significant applications, especially in quantum computation.
      Corresponding author: Liu Jian-Jun, liujj@hebtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61176089, 10974043), the Natural Science Foundation of Hebei Province, China (Grant Nos. A2011205092, 2014205005) and the Fund for Hebei Normal University for Nationalities, China (Grant No. 201109).
    [1]

    Majorana E 1937 Nuovo Cimento 14 171

    [2]

    Alicea J, Oreg Y, Refael G, von Oppen F, Fisher M P A 2011 Nat. Phys. 7 412

    [3]

    Das A, Ronen Y, Most Y, Oreg Y, Heiblum M, Shtrikman H 2012 Nat. Phys. 8 887

    [4]

    Leijnse M, Flensberg K 2011 Phys. Rev. Lett. 107 210502

    [5]

    Zhang D P, Tian G S 2015 Chin. Phys. B 24 080401

    [6]

    Fu L, Kane C L 2008 Phys. Rev. Lett. 100 096407

    [7]

    Sau J D, Lutchyn R M, Tewari S, Das Sarma S 2010 Phys. Rev. Lett. 104 040502

    [8]

    Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M, Kouwenhoven L P 2012 Science 336 1003

    [9]

    Flensberg K 2011 Phys. Rev. Lett. 106 090503

    [10]

    Oreg Y, Refael G, von Oppen F 2010 Phys. Rev. Lett. 105 177002

    [11]

    Lutchyn R M, Sau J D, Das Sarma S 2010 Phys. Rev. Lett. 105 077001

    [12]

    Deng M T, Yu C L, Huang G Y, Larsson M, Caroff P, Xu H Q 2012 Nano Lett. 12 6414

    [13]

    Tang H Z, Zhang Y T, Liu J J 2015 AIP Adv. 5 127129

    [14]

    Liu D E, Baranger H U 2011 Phys. Rev. B 84 201308

    [15]

    Liu J, Wang J, Zhang F C 2014 Phys. Rev. B 90 035307

    [16]

    Wang N, L S H, Li Y X 2014 J. Appl. Phys. 115 083706

    [17]

    Li Y X, Bai Z M 2013 J. Appl. Phys. 114 033703

    [18]

    Gong W J, Zhang S F, Li Z C, Yi G Y, Zheng Y S 2014 Phys. Rev. B 89 245413

    [19]

    Dessotti F A, de Souza R M, Souza F M, Seridonio A C 2014 J. Appl. Phys. 116 173701

    [20]

    Zhou Y, Guo J H 2015 Acta Phys. Sin. 64 167302 (in Chinese) [周洋, 郭健宏 2015 物理学报 64 167302]

    [21]

    Nilsson J, Akhmerov A R, Beenakker C W J 2008 Phys. Rev. Lett. 101 120403

    [22]

    L H F, Lu H Z, Shen S Q 2014 Phys. Rev. B 90 195404

    [23]

    Wang S X, Li Y X, Liu J J 2016 Chin. Phys. B 25 037304

    [24]

    Zocher B, Rosenow B 2013 Phys. Rev. Lett. 111 036802

    [25]

    Leijinse M, Flensberg K 2011 Phys. Rev. B 84 140501

    [26]

    Fano U 1961 Phys. Rev. 124 1866

    [27]

    Sun Q F, Wang J, Lin T H 1999 Phys. Rev. B 59 3831

    [28]

    Sun Q F, Wang J, Lin T H 2001 Phys. Rev. Lett. 87 176601

    [29]

    Barański J, Domański T 2015 Chin. Phys. B 24 017304

    [30]

    Fazio R, Raimondi R 1998 Phys. Rev. Lett. 80 2913

    [31]

    Haug H, Jauho A P 1998 Quantum Kinetics in Transport and Optics of Semiconductors (Berlin: Springer-Verlag) p181

    [32]

    Yeyati A L Cuevas J C, Lpez-Dvalos A, Martn-Rodero A 1997 Phys. Rev. B 55 R6137

    [33]

    Cuevas J C, Martn-Rodero A, Yeyati A L 1996 Phys. Rev. B 54 7366

    [34]

    Barański J, Domański T 2015 Chin. Phys. B 24 017304

  • [1]

    Majorana E 1937 Nuovo Cimento 14 171

    [2]

    Alicea J, Oreg Y, Refael G, von Oppen F, Fisher M P A 2011 Nat. Phys. 7 412

    [3]

    Das A, Ronen Y, Most Y, Oreg Y, Heiblum M, Shtrikman H 2012 Nat. Phys. 8 887

    [4]

    Leijnse M, Flensberg K 2011 Phys. Rev. Lett. 107 210502

    [5]

    Zhang D P, Tian G S 2015 Chin. Phys. B 24 080401

    [6]

    Fu L, Kane C L 2008 Phys. Rev. Lett. 100 096407

    [7]

    Sau J D, Lutchyn R M, Tewari S, Das Sarma S 2010 Phys. Rev. Lett. 104 040502

    [8]

    Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M, Kouwenhoven L P 2012 Science 336 1003

    [9]

    Flensberg K 2011 Phys. Rev. Lett. 106 090503

    [10]

    Oreg Y, Refael G, von Oppen F 2010 Phys. Rev. Lett. 105 177002

    [11]

    Lutchyn R M, Sau J D, Das Sarma S 2010 Phys. Rev. Lett. 105 077001

    [12]

    Deng M T, Yu C L, Huang G Y, Larsson M, Caroff P, Xu H Q 2012 Nano Lett. 12 6414

    [13]

    Tang H Z, Zhang Y T, Liu J J 2015 AIP Adv. 5 127129

    [14]

    Liu D E, Baranger H U 2011 Phys. Rev. B 84 201308

    [15]

    Liu J, Wang J, Zhang F C 2014 Phys. Rev. B 90 035307

    [16]

    Wang N, L S H, Li Y X 2014 J. Appl. Phys. 115 083706

    [17]

    Li Y X, Bai Z M 2013 J. Appl. Phys. 114 033703

    [18]

    Gong W J, Zhang S F, Li Z C, Yi G Y, Zheng Y S 2014 Phys. Rev. B 89 245413

    [19]

    Dessotti F A, de Souza R M, Souza F M, Seridonio A C 2014 J. Appl. Phys. 116 173701

    [20]

    Zhou Y, Guo J H 2015 Acta Phys. Sin. 64 167302 (in Chinese) [周洋, 郭健宏 2015 物理学报 64 167302]

    [21]

    Nilsson J, Akhmerov A R, Beenakker C W J 2008 Phys. Rev. Lett. 101 120403

    [22]

    L H F, Lu H Z, Shen S Q 2014 Phys. Rev. B 90 195404

    [23]

    Wang S X, Li Y X, Liu J J 2016 Chin. Phys. B 25 037304

    [24]

    Zocher B, Rosenow B 2013 Phys. Rev. Lett. 111 036802

    [25]

    Leijinse M, Flensberg K 2011 Phys. Rev. B 84 140501

    [26]

    Fano U 1961 Phys. Rev. 124 1866

    [27]

    Sun Q F, Wang J, Lin T H 1999 Phys. Rev. B 59 3831

    [28]

    Sun Q F, Wang J, Lin T H 2001 Phys. Rev. Lett. 87 176601

    [29]

    Barański J, Domański T 2015 Chin. Phys. B 24 017304

    [30]

    Fazio R, Raimondi R 1998 Phys. Rev. Lett. 80 2913

    [31]

    Haug H, Jauho A P 1998 Quantum Kinetics in Transport and Optics of Semiconductors (Berlin: Springer-Verlag) p181

    [32]

    Yeyati A L Cuevas J C, Lpez-Dvalos A, Martn-Rodero A 1997 Phys. Rev. B 55 R6137

    [33]

    Cuevas J C, Martn-Rodero A, Yeyati A L 1996 Phys. Rev. B 54 7366

    [34]

    Barański J, Domański T 2015 Chin. Phys. B 24 017304

  • [1] Liu Hui-Gang, Zhang Xiang-Yu, Nan Xue-Ying, Zhao Er-Gang, Liu Hai-Tao. All-dielectric metasurface two-parameter sensor based on quasi-bound states in continuum. Acta Physica Sinica, 2024, 73(4): 047802. doi: 10.7498/aps.73.20231514
    [2] Wang Yue, Wang Hao-Jie, Cui Zi-Jian, Zhang Da-Chi. Bound states in continuum domain of double resonant ring metal metasurfaces. Acta Physica Sinica, 2024, 73(5): 057801. doi: 10.7498/aps.73.20231556
    [3] Dai Xue-Feng, Gong Tong. Decoupling of Majorana bound states in T-shaped double-quantum-dot structure with ferromagnetic leads. Acta Physica Sinica, 2024, 73(5): 057301. doi: 10.7498/aps.73.20231434
    [4] Chen Shu-Gang, Li Xue-Si, Han Yu. Andreev reflection in a normal-superconductor-normal junction based on type-II Weyl semimetal. Acta Physica Sinica, 2022, 71(12): 127201. doi: 10.7498/aps.71.20211962
    [5] Du Qian, Chen Yi-Hang. Enhancing third-harmonic generation by quasi bound states in continuum in silicon nanoparticle arrays. Acta Physica Sinica, 2021, 70(15): 154206. doi: 10.7498/aps.70.20210332
    [6] Chen Chen, Liu Qin, Zhang Tong, Feng Dong-Lai. Vortex bound states and Majorana zero mode in electron-doped FeSe-based high-temperature superconductor. Acta Physica Sinica, 2021, 70(1): 017401. doi: 10.7498/aps.70.20201673
    [7] Lan Kang, Du Qian, Kang Li-Sha, Jiang Lu-Jing, Lin Zhen-Yu, Zhang Yan-Hui. The electron transfer properties of an open double quantum dot based on a quantum point contact. Acta Physica Sinica, 2020, 69(4): 040504. doi: 10.7498/aps.69.20191718
    [8] Liang Qi-Feng, Wang Zhi, Kawakami Takuto, Hu Xiao. Exploration of Majorana bound states in topological superconductors. Acta Physica Sinica, 2020, 69(11): 117102. doi: 10.7498/aps.69.20190959
    [9] Zhou Yang, Guo Jian-Hong. Shot noise characteristics of Majorana fermions in transport through double quantum dots. Acta Physica Sinica, 2015, 64(16): 167302. doi: 10.7498/aps.64.167302
    [10] Wan Wen-Jian, Yin Rong, Tan Zhi-Yong, Wang Feng, Han Ying-Jun, Cao Jun-Cheng. Study of 2.9 THz quantum cascade laser based on bound-to-continuum transition. Acta Physica Sinica, 2013, 62(21): 210701. doi: 10.7498/aps.62.210701
    [11] Lu Fa-Lin, Chen Chang-Yuan, You Yuan. Approximate analytical solutions of bound states for the double ring-shaped Hulthn potential. Acta Physica Sinica, 2013, 62(20): 200301. doi: 10.7498/aps.62.200301
    [12] Chen Xiong-Wen, Chen Bao-Ju, Shi Zhen-Gang, Song Ke-Hui. Giant Fano interference in a T-shaped coupled quantum-dot mesoscopic A-B ring. Acta Physica Sinica, 2009, 58(4): 2720-2725. doi: 10.7498/aps.58.2720
    [13] Liu Jing, Sun Jun-Qiang, Huang De-Xiu, Huang Chong-Qing, Wu Ming. Modulated photon confined states with graded-index photonic quantum well structure. Acta Physica Sinica, 2007, 56(4): 2281-2285. doi: 10.7498/aps.56.2281
    [14] Yu Hua-Ling. Abnormal minigap induced by superconducting proximity effects in a metallic film. Acta Physica Sinica, 2007, 56(10): 6038-6044. doi: 10.7498/aps.56.6038
    [15] Wu Zhuo-Jie, Zhu Ka-Di, Yuan Xiao-Zhong, Zheng Hang. Influence of electron-phonon interaction on single electron tunneling in a quantum dot molecule. Acta Physica Sinica, 2005, 54(7): 3346-3350. doi: 10.7498/aps.54.3346
    [16] Chen Gang, Lou Zhi-Mei. Bound states of relativistic particles in reflectionless-type potential. Acta Physica Sinica, 2003, 52(5): 1071-1074. doi: 10.7498/aps.52.1071
    [17] WANG CHUAN-KUI, JIANG ZHAO-TAN. QUANTUM BOUND STATES OF ONE KIND OF BENT QUANTUM WIRES. Acta Physica Sinica, 2000, 49(8): 1574-1579. doi: 10.7498/aps.49.1574
    [18] DONG ZHENG-CHAO, CHEN GUI-BIN, XING DING-YU, DONG JIN-MING. THE PROPERTIES OF THE ANDREEV REFLECTION IN FERROMAGNET-INSULATOR-d WAVE SUPERCONDUCTOR JUNCTION. Acta Physica Sinica, 2000, 49(11): 2276-2280. doi: 10.7498/aps.49.2276
    [19] QI YONG-CHANG. THE PARITY PROPERTY AND THE STARK EFFECT FOR THE ELECTRON-DIRAC DYON. Acta Physica Sinica, 1996, 45(3): 373-379. doi: 10.7498/aps.45.373
    [20] JIN KAI-JUAN, PAN SHAO-HUA, YANG GUO-ZHEN. . Acta Physica Sinica, 1995, 44(10): 1615-1621. doi: 10.7498/aps.44.1615
Metrics
  • Abstract views:  4588
  • PDF Downloads:  299
  • Cited By: 0
Publishing process
  • Received Date:  09 March 2016
  • Accepted Date:  14 April 2016
  • Published Online:  05 July 2016

/

返回文章
返回