Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dual-mode large-mode-area multi-core fiber with circularly arranged airhole cores

Jin Wen-Xing Ren Guo-Bin Pei Li Jiang You-Chao Wu Yue Shen Ya Yang Yu-Guang Ren Wen-Hua Jian Shui-Sheng

Citation:

Dual-mode large-mode-area multi-core fiber with circularly arranged airhole cores

Jin Wen-Xing, Ren Guo-Bin, Pei Li, Jiang You-Chao, Wu Yue, Shen Ya, Yang Yu-Guang, Ren Wen-Hua, Jian Shui-Sheng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Multi-core fiber has aroused considerable interest as one of potential candidates for space division multiplexing that provides an additional freedom degree to increase optical fiber capacity to overcome the transmission bottleneck of current single-mode fiber optical networks. Few-mode fiber is also under intense study as a means to achieve space division multiplexing. We propose a novel dual-mode large-mode-area multi-core fiber (DMLMAMCF), which uses multi-core structure to realize few-mode condition when pursuing large mode-area. The proposed fiber consists of 5 conventional silica-based cores in the center region and 14 air hole cores surrounding the center cores. The outer circle with 12 air hole cores, which function similarly to the fluorine doping region in the bend-insensitive fiber, can mitigate the bending loss when keeping large mode area. The symmetrically distributed two cores on both sides of the center core in central region can reduce the half second-order LP11 mode consisting of two degenerate HE11 modes, TE01 mode, two degenerate HE21 modes and TM01 mode, thus leading to the remaining four vector modes, i.e. two degenerate HE11 modes and two degenerate HE21 modes. That is the reason why we call it strict dual-mode. We focus on large-mode-area properties and bending characteristics of the dual-mode. The influence of structural parameters that include corepitch Λ, refractive index difference between core and cladding Δn, and fiber core radius a, on mode characteristics and mode area of HE11 mode and HE21 mode is investigated in detail. The results reveal that it is helpful to increase the effective area of fundamental mode when we increase the value of corepitch, reduce the refractive index and fiber core radius. The effective mode area of HE11 is about 285.10 μm2 under the strict dual-mode condition. In addition, the relationship between bending loss and bending radius, and the relationship between effective mode area and bending radius of two modes are both investigated. For the HE11 mode, the least bending loss is about 5×10-5 dB/m while the least effective mode area with bending radius larger than 0.6 m is about 285.10 μm2. The HE21 mode is more sensitive to bend effect. The least bending loss is about 0.028 dB/m and the effective mode area is larger than 280.00 μm2 except for resonant coupling points. Large effective areas of both modes with low bending loss can be realized. Larger effective mode area with larger corepitch, appropriate refractive index difference and fiber core radius can be achieved. This fiber may find its usage in high power fiber lasers and amplifiers.
      Corresponding author: Jin Wen-Xing, 13111011@bjtu.edu.cn
    • Funds: Project supported by the National Science Fund for Distinguished Young Scholars of China (Grant No. 61525501) and the National Natural Science Foundation of China (Grant Nos. 61178008, 61275092, 61405008).
    [1]

    Essiambre R J, Ryf R, Fontaine N K, Randel S 2013 IEEE Photonics. J. 5 0701307

    [2]

    Winzer P J 2012 IEEE Photonics. J. 4 647

    [3]

    Winzer P J 2014 Nat. Photon. 8 345

    [4]

    Sano A, Masuda H, Kobayashi T, Fujiwara M, Horikoshi K, Yoshida E, Miyamoto Y, Matsui M, Mizoguchi M, Yamazaki H, Sakamaki Y, Ishii H 2011 J. Lightwave Technol. 29 578

    [5]

    Houtsma V, Veen D V, Chow H 2016 J. Lightwave Technol. 34 2005

    [6]

    Li F, Yu J, Cao Z, Chen M, Zhang J, Li X 2016 Opt. Express 24 2648

    [7]

    Richardson D J, Fini J M, Nelson L E 2013 Nat. Photon. 7 354

    [8]

    Li G, Bai N, Zhao N, Xia C 2014 Adv. Opt. Photon. 6 413

    [9]

    Van Uden R G H, Correa R A, Lopez E A, Huijskens F M, Xia C, Li G, Schlzgen A, Waardt H D, Koonen A M J, Okonkwo C M 2014 Nat. Photon. 8 865

    [10]

    Saitoh K, Matsuo S 2013 J. Nanophotonics. 2 441

    [11]

    Sakaguchi J, Puttnam B J, Klaus W, Awaji Y, Wada N, Kanno A, Kawanishi T, Imamura K, Inaba H, Mukasa K, Sugizaki R, Kobayashi T, Watanabe M 2013 J. Lightwave Technol. 31 554

    [12]

    Sakaguchi J, Klaus W, Mendinueta J M D, Puttnam B J, Luis R S, Awaji Y, Wada N, Hayashi T, Nakanish T, Watanabe T, Kokubun Y, Takahata T, Kobayashi T 2016 J. Lightwave Technol. 34 93

    [13]

    Kong F, Saitoh K, Mcclane D, Hawkins T, Foy P, Gu G, Dong L 2012 Opt. Express 20 26363

    [14]

    Li S H, Wang J 2015 Opt. Express 23 18736

    [15]

    Napierala M, Beres P E, Nasilowski T, Mergo P, Berghmans F, Thienpont H 2012 IEEE Photon. Technol. Lett. 24 1409

    [16]

    Masahiro K, Kunimasa S, Katsuhiro T, Shoji T, Shoichiro M, Munehisa F 2012 Opt. Express 20 15061

    [17]

    Chen M Y, Li Y R, Zhou J, Zhang Y K 2013 J. Lightwave Technol. 31 476

    [18]

    Ryf R, Randel S, Gnauck A H, Bolle C, Sierra A, Mumtaz S, Esmaeelpour M, Burrows E C, Essiambre R J, Winzer P J, Peckham D W, McCurdy A H, Lingle R 2012 J. Lightwave Technol. 30 521

    [19]

    Zheng S W, Ren G B, Lin Z, Jian W, Jian S S 2013 Opt. Fiber. Technol. 19 419

    [20]

    Lin Z, Ren G B, Zheng S W, Jian S S 2013 Opt. Laser. Technol. 51 11

    [21]

    Zheng S W, Lin Z, Ren G B, Jian S S 2013 Acta Phys. Sin. 62 044224 (in Chinese)[郑斯文, 林桢, 任国斌, 简水生2013物理学报62 044224]

    [22]

    Lin Z, Zheng S W, Ren G B, Jian S S 2013 Acta Phys. Sin. 62 064214 (in Chinese)[林桢, 郑斯文, 任国斌, 简水生2013物理学报62 064214]

    [23]

    Vogel M M, AbdouA M, Voss A, Graf T 2009 Opt. Lett. 34 2876

    [24]

    Snyder A W, Love J D 1983 Optical Waveguide Theory (London:Chapman and Hall Ltd) p7

    [25]

    Ren G B, Lin Z, Zheng S W, Jian S S 2013 Opt. Lett. 38 781

  • [1]

    Essiambre R J, Ryf R, Fontaine N K, Randel S 2013 IEEE Photonics. J. 5 0701307

    [2]

    Winzer P J 2012 IEEE Photonics. J. 4 647

    [3]

    Winzer P J 2014 Nat. Photon. 8 345

    [4]

    Sano A, Masuda H, Kobayashi T, Fujiwara M, Horikoshi K, Yoshida E, Miyamoto Y, Matsui M, Mizoguchi M, Yamazaki H, Sakamaki Y, Ishii H 2011 J. Lightwave Technol. 29 578

    [5]

    Houtsma V, Veen D V, Chow H 2016 J. Lightwave Technol. 34 2005

    [6]

    Li F, Yu J, Cao Z, Chen M, Zhang J, Li X 2016 Opt. Express 24 2648

    [7]

    Richardson D J, Fini J M, Nelson L E 2013 Nat. Photon. 7 354

    [8]

    Li G, Bai N, Zhao N, Xia C 2014 Adv. Opt. Photon. 6 413

    [9]

    Van Uden R G H, Correa R A, Lopez E A, Huijskens F M, Xia C, Li G, Schlzgen A, Waardt H D, Koonen A M J, Okonkwo C M 2014 Nat. Photon. 8 865

    [10]

    Saitoh K, Matsuo S 2013 J. Nanophotonics. 2 441

    [11]

    Sakaguchi J, Puttnam B J, Klaus W, Awaji Y, Wada N, Kanno A, Kawanishi T, Imamura K, Inaba H, Mukasa K, Sugizaki R, Kobayashi T, Watanabe M 2013 J. Lightwave Technol. 31 554

    [12]

    Sakaguchi J, Klaus W, Mendinueta J M D, Puttnam B J, Luis R S, Awaji Y, Wada N, Hayashi T, Nakanish T, Watanabe T, Kokubun Y, Takahata T, Kobayashi T 2016 J. Lightwave Technol. 34 93

    [13]

    Kong F, Saitoh K, Mcclane D, Hawkins T, Foy P, Gu G, Dong L 2012 Opt. Express 20 26363

    [14]

    Li S H, Wang J 2015 Opt. Express 23 18736

    [15]

    Napierala M, Beres P E, Nasilowski T, Mergo P, Berghmans F, Thienpont H 2012 IEEE Photon. Technol. Lett. 24 1409

    [16]

    Masahiro K, Kunimasa S, Katsuhiro T, Shoji T, Shoichiro M, Munehisa F 2012 Opt. Express 20 15061

    [17]

    Chen M Y, Li Y R, Zhou J, Zhang Y K 2013 J. Lightwave Technol. 31 476

    [18]

    Ryf R, Randel S, Gnauck A H, Bolle C, Sierra A, Mumtaz S, Esmaeelpour M, Burrows E C, Essiambre R J, Winzer P J, Peckham D W, McCurdy A H, Lingle R 2012 J. Lightwave Technol. 30 521

    [19]

    Zheng S W, Ren G B, Lin Z, Jian W, Jian S S 2013 Opt. Fiber. Technol. 19 419

    [20]

    Lin Z, Ren G B, Zheng S W, Jian S S 2013 Opt. Laser. Technol. 51 11

    [21]

    Zheng S W, Lin Z, Ren G B, Jian S S 2013 Acta Phys. Sin. 62 044224 (in Chinese)[郑斯文, 林桢, 任国斌, 简水生2013物理学报62 044224]

    [22]

    Lin Z, Zheng S W, Ren G B, Jian S S 2013 Acta Phys. Sin. 62 064214 (in Chinese)[林桢, 郑斯文, 任国斌, 简水生2013物理学报62 064214]

    [23]

    Vogel M M, AbdouA M, Voss A, Graf T 2009 Opt. Lett. 34 2876

    [24]

    Snyder A W, Love J D 1983 Optical Waveguide Theory (London:Chapman and Hall Ltd) p7

    [25]

    Ren G B, Lin Z, Zheng S W, Jian S S 2013 Opt. Lett. 38 781

  • [1] Hui Zhan-Qiang, Liu Rui-Hua, Gao Li-Ming, Han Dong-Dong, Li Tian-Tian, Gong Jia-Min. Low-loss weak-coupling 6-mode hollow-core negative curvature fiber based on symmetric double-ring nested tube. Acta Physica Sinica, 2024, 73(7): 070703. doi: 10.7498/aps.73.20231785
    [2] Meng Ling-Zhi, Yuan Li-Bo. Thermal diffusion coupling mechanism and its application of discrete waveguide. Acta Physica Sinica, 2023, 72(24): 246601. doi: 10.7498/aps.72.20230204
    [3] Zhang Yuan, Jiang Wen-Fan, Chen Ming-Yang. Design of ring-core few-mode multi-core fiber with low crosstalk and low bending loss. Acta Physica Sinica, 2022, 71(9): 094205. doi: 10.7498/aps.71.20211534
    [4] Zheng Si-Wen, Liu Ya-Zhuo, Luo Xiao-Ling, Wang Li-Hui, Zhang Na, Zhang Jing-Jing, Jin Chuan-Yang, Xu Bing-Li, Qu Qiang, Chen Ling. Application and analysis of three-layer-core structure in single-mode large-mode-area fiber with low bending loss. Acta Physica Sinica, 2021, 70(22): 224214. doi: 10.7498/aps.70.20210410
    [5] Zheng Xing-Juan, Ren Guo-Bin, Huang Lin, Zheng He-Ling. Study on bending losses of few-mode optical fibers. Acta Physica Sinica, 2016, 65(6): 064208. doi: 10.7498/aps.65.064208
    [6] Xu Min-Nan, Zhou Gui-Yao, Chen Cheng, Hou Zhi-Yun, Xia Chang-Ming, Zhou Gai, Liu Hong-Zhan, Liu Jian-Tao, Zhang Wei. Analysis of a novel four-mode micro-structured fiber with low-level crosstalk and high mode differential group delay. Acta Physica Sinica, 2015, 64(23): 234206. doi: 10.7498/aps.64.234206
    [7] Zhao Nan, Chen Gui, Wang Yi-Bo, Peng Jing-Gang, Li Jin-Yan. Double-clad large-mode-area polarization-maintaining ytterbium doped photonic crystal fiber. Acta Physica Sinica, 2014, 63(2): 024202. doi: 10.7498/aps.63.024202
    [8] Chen Yan, Zhou Gui-Yao, Xia Chang-Ming, Hou Zhi-Yun, Liu Hong-Zhan, Wang Chao. Analysis of a novel dual-mode large-mode-area micro-structured fiber. Acta Physica Sinica, 2014, 63(1): 014701. doi: 10.7498/aps.63.014701
    [9] Liao Wen-Ying, Fan Wan-De, Li Yuan, Chen Jun, Bu Fan-Hua, Li Hai-Peng, Wang Xin-Ya, Huang Ding-Ming. Investigation of a novel all-solid large-mode-area photonic quasi-crystal fiber. Acta Physica Sinica, 2014, 63(3): 034206. doi: 10.7498/aps.63.034206
    [10] Yi Chang-Shen, Dai Shi-Xun, Zhang Pei-Qing, Wang Xun-Si, Shen Xiang, Xu Tie-Feng, Nie Qiu-Hua. Design of a novel single-mode large mode area infrared chalcogenide glass photonic crystal fibers. Acta Physica Sinica, 2013, 62(8): 084206. doi: 10.7498/aps.62.084206
    [11] Zhang Yin, Chen Ming-Yang, Zhou Jun, Zhang Yong-Kang. Investigation on large-mode-area flat-topped optical fiber with microstructured core and its transmission characteristics. Acta Physica Sinica, 2013, 62(17): 174211. doi: 10.7498/aps.62.174211
    [12] Wang Xin, Lou Shu-Qin, Lu Wen-Liang. Novel bend-resistant large-mode-area photonic crystal fiber with a triangular-core. Acta Physica Sinica, 2013, 62(18): 184215. doi: 10.7498/aps.62.184215
    [13] Lou Shu-Qin, Lu Wen-Liang, Wang Xin. A novel bend-resistant large-mode-area photonic crystal fiber. Acta Physica Sinica, 2013, 62(4): 044201. doi: 10.7498/aps.62.044201
    [14] Lin Zhen, Zheng Si-Wen, Ren Guo-Bin, Jian Shui-Sheng. Characterization and comparison of 7-core and 19-core large-mode-area few-mode fibers. Acta Physica Sinica, 2013, 62(6): 064214. doi: 10.7498/aps.62.064214
    [15] Zheng Si-Wen, Lin Zhen, Ren Guo-Bin, Jian Shui-Sheng. Design and analysis of novel multi-core dual-mode large-mode-area optical fiber. Acta Physica Sinica, 2013, 62(4): 044224. doi: 10.7498/aps.62.044224
    [16] Chen Gui, Jiang Zuo-Wen, Peng Jing-Gang, Li Hai-Qing, Dai Neng-Li, Li Jin-Yan. Study of air-clad large-mode-area ytterbium doped photonic crystal fiber. Acta Physica Sinica, 2012, 61(14): 144206. doi: 10.7498/aps.61.144206
    [17] Zhang Xin, Hu Ming-Lie, Song You-Jian, Chai Lu, Wang Qing-Yue. Dissipative-soliton mode locked laser based on large-mode-area photonic crystal fiber. Acta Physica Sinica, 2010, 59(3): 1863-1869. doi: 10.7498/aps.59.1863
    [18] Guo Yan-Yan, Hou Lan-Tian. Design of all-solid octagon photonic crystal fiber with large mode area. Acta Physica Sinica, 2010, 59(6): 4036-4041. doi: 10.7498/aps.59.4036
    [19] Zhang Chi, Hu Ming-Lie, Song You-Jian, Zhang Xin, Chai Lu, Wang Qing-Yue. An Yb-doped large-mode-area photonic crystal fiber mode-locking laser with free output coupler. Acta Physica Sinica, 2009, 58(11): 7727-7734. doi: 10.7498/aps.58.7727
    [20] Song You-Jian, Hu Ming-Lie, Liu Qing-Wen, Li Jin-Yan, Chen Wei, Chai Lu, Wang Qing-Yue. A mode-locked Yb3+-doped double-clad large-mode-area fiber laser. Acta Physica Sinica, 2008, 57(8): 5045-5048. doi: 10.7498/aps.57.5045
Metrics
  • Abstract views:  6273
  • PDF Downloads:  235
  • Cited By: 0
Publishing process
  • Received Date:  27 July 2016
  • Accepted Date:  25 October 2016
  • Published Online:  20 January 2017

/

返回文章
返回