Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Low-loss weak-coupling 6-mode hollow-core negative curvature fiber based on symmetric double-ring nested tube

Hui Zhan-Qiang Liu Rui-Hua Gao Li-Ming Han Dong-Dong Li Tian-Tian Gong Jia-Min

Citation:

Low-loss weak-coupling 6-mode hollow-core negative curvature fiber based on symmetric double-ring nested tube

Hui Zhan-Qiang, Liu Rui-Hua, Gao Li-Ming, Han Dong-Dong, Li Tian-Tian, Gong Jia-Min
PDF
HTML
Get Citation
  • Few-mode optical fibers have played an increasingly important role in breaking through the transmission capacity limitations of single-mode optical fiber and alleviating the bandwidth crisis in optic fiber communication systems in recent years. Nevertheless, traditional solid core few-mode optical fibers usually suffer optical fiber nonlinearity and mode coupling, leading to mode crosstalk between channels. Hollow core negative curvature fibers (HC-NCF) have attracted widespread attention due to their advantages, such as low latency, low nonlinearity, low dispersion, low transmission loss, and large operating bandwidth. In this work, a novel low-loss few-mode HC-NCF with symmetrically double ring nested tube structure is designed, which supports six core modes including LP01, LP11, LP21, LP02, LP31a, and LP31b. The designed optical fiber is based on silica dioxide substrate and adopts a unique symmetrical double ring nested cladding structure, which can effectively suppress the coupling between the core mode and the cladding mode. The finite element method (FDE) is used to numerically analyze the properties of the proposed few-mode HC-NCF and optimize the structural parameters of the few-mode HC-NCF. Moreover, the confinement loss and bending loss of all core modes are investigated. The simulation results show that the proposed few-mode HC-NCF can support the independent transmission of six weakly coupled core modes (with the effective refractive index difference greater than 1×10–4 between the adjacent core modes, which greatly avoids the coupling between the adjacent modes in the fiber core). In the 400 nm bandwidth (1.23–1.63 μm, covering the O, E, S, C, and L bands), all six modes in the fiber core maintain low loss transmission. Moreover, in the range of 1.3–1.63 μm, the confinement loss (CL) of LP01, LP11 and LP21 mode are all less than 1×10–3 dB/m, and the CL of LP02 and LP31b mode are both less than 3×10–3 dB/m. The CL of each mode reaches the lowest value at 1.4 μm, and the LP01 mode has the lowest CL of 4.3×10–7 dB/m. In addition, for a bending radius of 7 cm, each mode maintains the low bending loss characteristic in a certain operating wavelength range. In the range of 1.23–1.61 μm, the BL of LP01 is less than 4.5×10–4 dB/m, and the BL of LP11 is less than 1.3×10–3 dB/m. The tolerance analysis shows that even with the deviation of structural parameters of ±1%, the few-mode HC-NCF can still maintain the characteristic of low-loss and weak coupling. The designed few-mode HC-NCF has ultra-low CL and bending-insensitive characteristics while supporting independent transmission of six modes, which will find huge potential applications in future high performance mode division multiplexing systems.
      Corresponding author: Hui Zhan-Qiang, zhanqianghui@xupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61875165), the Key Research and Development Program of Shaanxi Province, China (Grant No. 2022GY-008), the Natural Science Research Program of Shaanxi Province, China (Grant No. 2022JQ-638), the Innovation Capability Support Program of Shaanxi Province, China (Grant No. 2022PT-15), the Collaborative Innovation Projects of Education Office of Shaanxi Province, China (Grant No. 20JY060), and the Open Fund for 705 Key Laboratory, China (Grant No. 705JCH2023-3.2).
    [1]

    Benabid F, Knight J C, Antonopoulos G, Russell P S J 2002 Science 298 399Google Scholar

    [2]

    Poletti F, Wheeler N V, Petrovich M N, Baddela N, Fokoua E N, Hayes J R, Gray D R, Li Z, Slavík R, Richardson D J 2013 Nat. Photonics 7 279Google Scholar

    [3]

    Belardi W, Knight J C 2014 Opt. Lett. 39 1853Google Scholar

    [4]

    Yu F, Knight J C 2016 IEEE J. Sel. Top. Quantum Electron. 22 146Google Scholar

    [5]

    Hasan M I, Akhmediev N, Chang W 2017 Opt. Lett. 42 703Google Scholar

    [6]

    Shen W, Du J, Sun L, Wang C, He Z 2020 J. Lightwave Technol. 38 3874Google Scholar

    [7]

    Liu Z, Karanov B, Galdino L, Hayes J R, Lavery D, Clark K, Shi K, Elson D J, Thomsen B C, Petrovich M N, Richardson D J, Poletti F, Slavik R, Bayvel P 2019 J. Lightwave Technol. 37 909Google Scholar

    [8]

    Michaud-Belleau V, Fokoua E R N, Bradley T, Hayes J R, Slavik R 2021 Optica 8 216Google Scholar

    [9]

    Zhu X, Wu D, Wang Y, Yu F, Li Q, Qi Y, Knight J, Chen S, Hu L 2021 Opt. Express 29 1492Google Scholar

    [10]

    Azendorf F, Schmauss B, Shi B, Fokoua E N, Radan Slavík, Eiselt M 2021 Optical Fiber Communications Conference and Exhibition (OFC) San Francisco, California United States, June 6–10, 2021 p1

    [11]

    Liu W, Zheng Y, Wang Z, Wang Z X, Yang J, Chen M X, Qi M, Rehman S U, Shum P P, Zhu L, Wei L 2021 Adv. Mater. Interfaces 8 2001978Google Scholar

    [12]

    Gérôme F, Cook K T, George A K, Wadsworth W J, Knight J C 2007 Opt. Express 15 7126Google Scholar

    [13]

    Urich A, Maier R R, Yu F, Knight J C, Hand D P, Shephard J D 2013 Biomed. Opt. Express 4 193Google Scholar

    [14]

    Couch D E, Hickstein D D, Winters D G, Backus S J, Kirchner M S, Domingue S R, Ramirez J J, Durfee C G, Murnane M M, Kapteyn H C 2020 Optica 7 832Google Scholar

    [15]

    Poletti F 2014 Opt. Express 22 23807Google Scholar

    [16]

    Cregan R F, Mangan B J, Knight J C, Birks T A, Russell P S, Roberts P J, Allan D C 1999 Science 285 1537Google Scholar

    [17]

    Roberts P, Couny F, Sabert H, Mangan B, Williams D, Farr L, Mason M, Tomlinson A, Birks T, Knight J, Russell S J P 2005 Opt. Express 13 236Google Scholar

    [18]

    Luan F, George A K, Hedley T D, Pearce G J, Bird D M, Knight J C, Russell P S J 2004 Opt. Lett. 29 2369Google Scholar

    [19]

    Wei C, Weiblen R J, Menyuk C R, Hu J 2017 Adv. Opt. Photonics 9 562Google Scholar

    [20]

    Jasion G T, Bradley T, Harrington K, Sakr H, Poletti F 2020 Optical Fiber Communications Conference and Exhibition (OFC) San Diego, California United States, March 8–12, 2020

    [21]

    Osório J H, Amrani F, Delahaye F, Dhaybi A, Vasko K, Melli F, Giovanardi F, Vandembroucq D, Tessier G, Vincetti L, Debord B, Gérôme F, Benabid F 2023 Nat. Commun. 14 1146Google Scholar

    [22]

    Mulvad H C H, Abokhamis Mousavi S, Zuba V, Xu L, Sakr H, Bradley T D, Hayes J R, Jasion G T, Numkam Fokoua E R, Taranta A, Alam S, Richardson D J, Poletti F 2022 Nat. Photonics 16 448Google Scholar

    [23]

    Ding W, Wang Y Y, Gao S, Wang M, Wang P 2020 IEEE J. Sel. Top. Quantum Electron. 26 4400312Google Scholar

    [24]

    Gao S F, Wang Y Y, Ding W, Jiang D, Gu S, Zhang X, Wang P 2018 Nat. Commun. 9 2828Google Scholar

    [25]

    Yue B, Feng J, Tao J, Zhou G, Huang X 2021 Opt. Fiber Technol. 67 102734Google Scholar

    [26]

    Xue L, Sheng X, Jia H, Lou S 2023 J. Lightwave Technol. 41 6043Google Scholar

    [27]

    Belardi W 2015 J. Lightwave Technol. 33 4497Google Scholar

    [28]

    Yan S B, Lou S, Wang X, Zhang W, Zhao T 2018 Opt. Fiber Technol. 46 118Google Scholar

    [29]

    Michieletto M, Lyngsø J K, Jakobsen C, Lægsgaard J, Bang O, Alkeskjold T T 2016 Opt. Express 24 7103Google Scholar

    [30]

    Zhang X, Feng Z, Marpaung D A, Fokoua E R, Sakr H, Hayes J R, Poletti F, Richardson D J, Slavík R 2022 Light Sci. Appl 11 213Google Scholar

    [31]

    Yao C Y, Gao S F, Wang Y Y, Wang P, Jin W, Ren W 2020 J. Lightwave Technol. 38 2067Google Scholar

    [32]

    Ma X X, Li J S, Guo H T, Li S G, Zhang H, Xu Y T, Meng X J, Guo Y, Chen Q, Wang C J, Cui X W 2023 Plasmonics 18 899Google Scholar

    [33]

    Zhang H, Chang Y J, Xu Y T, Liu C Z, Xiao X S, Li J S, Ma X X, Wang Y Y, Guo H T 2023 Opt. Express 31 7659Google Scholar

    [34]

    Zhou Y, Cao R, Wang S, Peng J, Li H, Chu Y, Xing Y, Dai N, Li J 2022 IEEE Photonics J. 14 1Google Scholar

    [35]

    Zhu Y, Wang S, Chen M, Zuo X, Wang H, Rao C, Xu Y, Ji D, Liu Y 2022 IEEE Photonics Technol. Lett. 34 283Google Scholar

    [36]

    Nawazuddin M B, Wheeler N V, Hayes J R, Bradley T D, Sandoghchi S R, Gouveia M A, Jasion G T, Richardson D J, Poletti F 2018 J. Lightwave Technol. 36 1213Google Scholar

    [37]

    Yan S, Lou S, Lian Z, Zhang W, Wang X 2019 J. Lightwave Technol. 37 5707Google Scholar

    [38]

    Luo L W, Ophir N, Chen C P, Gabrielli L H, Poitras C B, Bergmen K, Lipson M 2014 Nat. Commun. 5 3069Google Scholar

    [39]

    Chen Y X, Lin Z J, Bélanger-de Villers S, Rusch L A, Shi W 2020 IEEE J. Sel. Top. Quantum Electron. 26 6100107Google Scholar

    [40]

    Naghshvarianjahromi M, Kumar S, Deen M J, Iwaya T, Kimura K, Yoshida M, Hirooka T, Nakazawa M 2022 IEEE J. Sel. Top. Quantum Electron. 28 7500210Google Scholar

    [41]

    Richardson D J, Fini J M, Nelson L E 2013 Nat. Photonics 7 354Google Scholar

    [42]

    Tarighat A, Hsu R C J, Shah A, Sayed A H, Jalali B 2007 IEEE Commun. Mag. 45 57Google Scholar

    [43]

    Berdagué S, Facq P 1982 Appl. Opt. 21 1950Google Scholar

    [44]

    Habib M S, Antonio-Lopez J E, Markos C, Schülzgen A, Amezcua-Correa R 2019 Opt. Express 27 3824Google Scholar

    [45]

    Habib M S, Bang O, Bache M 2016 Opt. Express 24 8429Google Scholar

    [46]

    Wang Z, Tu J, Liu Z, Yu C, Lu C 2020 J. Lightwave Technol. 38 864Google Scholar

    [47]

    Goel C, Yoo S 2021 J. Lightwave Technol. 39 6592Google Scholar

    [48]

    Ou J, Li J P, Zheng W Q, Qin Y W, Xu O, Huang Q D, Peng D, Xiang M, Xu Y, Fu S N 2022 20th International Conference on Optical Communications and Networks (ICOCN) Shenzhen, China, August 12–15, 2022 p1

    [49]

    Liu H, Wang Y, Zhou Y, Guan Z, Yu Z, Ling Q, Luo S, Shao J, Huang D, Chen D 2022 Opt. Express 30 21833Google Scholar

    [50]

    Vincetti L, Setti V 2012 Opt. Express 20 14350Google Scholar

    [51]

    Zhang J, Wang Z, Chen J 2014 Proc. COMSOL Conf. Shanghai, China 2014 p2

    [52]

    Litchinitser N M, Abeeluck A K, Headley C, Eggleton B J 2002 Opt. Lett. 27 1592Google Scholar

    [53]

    Vincetti L 2016 Opt. Express 24 10313Google Scholar

    [54]

    Chen X, Hu X, Yang L, Peng J, Li H, Dai N, Li J 2019 Opt. Express 27 19548Google Scholar

    [55]

    Wang L, LaRochelle S 2015 Opt. Lett. 40 5846Google Scholar

    [56]

    Nagano K, Kawakami S, Nishida S 1978 Appl. Opt. 17 2080Google Scholar

    [57]

    Belardi W, Knight J C 2014 Opt. Express 22 10091Google Scholar

    [58]

    Pryamikov A D, Biriukov A S, Kosolapov A F, Plotnichenko V G, Semjonov S L, Dianov E M 2011 Opt. Express 19 1441Google Scholar

    [59]

    Yu F, Wadsworth W J, Knight J C 2012 Opt. Express 20 11153Google Scholar

    [60]

    Yang S, Sheng X, Zhao G, Lou S, Guo J 2021 IEEE Access 9 29599Google Scholar

    [61]

    Hayashi J G, Ventura A, Cimek J, Slimen F B, White N, Sakr H, Jasion G T, Wheeler N V, Poletti F 2020 22nd International Conference on Transparent Optical Networks (ICTON) Bari, Italy, July 19–23, 2020 p1

    [62]

    Shaha K S R, Khaleque A 2021 Appl. Opt. 60 6243Google Scholar

    [63]

    Wei C, Weiblen R J, Menyuk C R, Hu J 2017 Adv. Opt. Photonics 9 504Google Scholar

  • 图 1  对称双环嵌套管少模HC-NCF的横截面结构图

    Figure 1.  Cross sectional structure of few-mode HC-NCF with symmetrically double ring nested tube structure.

    图 2  当纤芯半径R = 16 μm和k = 0.4时, 改变g对模式传输特性的影响 (a) 有效折射率; (b) CL

    Figure 2.  When the core radius R = 16 μm and k = 0.4, the impact of changing g on mode transmission characteristics: (a) Effective refractive index; (b) CL.

    图 3  少模HC-NCF中纤芯模式的模场分布图

    Figure 3.  Mode field distribution of guided core modes in the few-mode HC-NCF.

    图 4  当纤芯半径R = 16 μm, g = 0.5 μm, 改变k对模式传输特性的影响 (a) 有效折射率; (b) 相邻模式有效折射率差; (c) CL; (d) 相邻模式间DGD

    Figure 4.  Impact of changing k on mode transmission characteristics for R = 16 μm and g = 0.5 μm: (a) Effective refractive index; (b) difference of effective refractive index of adjacent modes; (c) CL; (d) DGD between adjacent modes.

    图 5  k = 0.25, LP31a 模的模场分布 (a) 二维平面图; (b) 三维立体图

    Figure 5.  Mode field distribution of LP31a modes at k = 0.25: (a) 2D plane diagram; (b) 3D stereo diagram.

    图 6  g = 0.5 μm, k = 0.4时, 改变纤芯半径R对模式传输的影响 (a) 有效折射率; (b) 相邻模式有效折射率差; (c) CL; (d) 相邻模式间的DGD

    Figure 6.  Impact of changing R on mode transmission characteristics for g = 0.5 μm and k = 0.4: (a) Effective refractive index; (b) difference of effective refractive index of adjacent modes; (c) CL; (d) DGD between adjacent modes.

    图 7  g = 0.5 μm, k = 0.4, R = 24 μm时, 波长变化对模式传输的影响 (a) 有效折射率; (b) 相邻模式有效折射率差; (c) CL; (d) 相邻模式间的DGD

    Figure 7.  Variation of changing wavelength on mode transmission characteristics for g = 0.5 μm, k = 0.4 and R = 16 μm: (a) Effective refractive index; (b) difference of effective refractive index of adjacent modes; (c) CL; (d) DGD between adjacent modes.

    图 8  g = 0.5 μm, k = 0.4, R = 24 μm时, 不同弯曲半径对模式传输的影响 (a) 预期基线; (b) 有效折射率; (c) 相邻模式有效折射率差; (d) BL

    Figure 8.  Variation of changing bending radius on mode transmission characteristics for g = 0.5 μm, k = 0.4: (a) Expected baseline; (b) effective refractive index; (c) difference of effective refractive index of adjacent modes; (d) BL.

    图 9  当弯曲半径Rb = 7 cm时, 不同波长对模式传输的影响 (a) 相邻模式有效折射率差; (b) BL

    Figure 9.  Variation of changing wavelength on mode transmission with bending radius Rb = 7 cm: (a) Difference of effective refractive index of adjacent modes; (b) BL.

    图 10  嵌套管壁厚参数t偏移+1%时, 相邻模式有效折射率差和CL的变化

    Figure 10.  With nested tube wall thickness parameter t deviation +1%, the change of effective refractive index difference of adjacent mode and CL.

    图 11  嵌套管壁厚参数t偏移–1%时, 相邻模式有效折射率差和CL的变化

    Figure 11.  With nested tube wall thickness parameter t deviation –1%, the change of effective refractive index difference of adjacent mode and CL.

    图 12  参数k偏移+1%时, 相邻模式有效折射率差和CL的变化

    Figure 12.  With parameter k deviation +1%, the change of effective refractive index difference of adjacent mode and CL.

    图 13  参数k偏移–1%时, 相邻模式有效折射率差和CL的变化

    Figure 13.  With parameter k deviation -1%, the change of effective refractive index difference of adjacent mode and CL.

    表 1  少模HC-NCF性能比较

    Table 1.  Performance comparison of few-mode HC-NCF

    结构 中心波长/µm 支持模式数 基模最低限制损耗/(dB·m–1) 工作带宽/nm 弯曲半径/cm 弯曲损耗/(dB·m–1)
    Wang Z, et al. (2020)[46] 1.55 2 1.7×10–4 @1.53 µm 340 10 6.6×10–4 (200 nm)
    Goel C, et al. (2021)[47] 1.00 5 1.4×10–5@1 µm 20 5×10–3
    Ou J, et al. (2022)[48] 1.55 2 7.4×10–7@1.06 µm 800
    Liu H, et al. (2022)[49] 1.55 5 3.4×10–7@1.38 µm 300 6 3×10–4 (210 nm)
    Our work 1.55 6 4.3×10–7@1.4 µm 330 7 4.5×10–4 (420 nm)
    DownLoad: CSV
  • [1]

    Benabid F, Knight J C, Antonopoulos G, Russell P S J 2002 Science 298 399Google Scholar

    [2]

    Poletti F, Wheeler N V, Petrovich M N, Baddela N, Fokoua E N, Hayes J R, Gray D R, Li Z, Slavík R, Richardson D J 2013 Nat. Photonics 7 279Google Scholar

    [3]

    Belardi W, Knight J C 2014 Opt. Lett. 39 1853Google Scholar

    [4]

    Yu F, Knight J C 2016 IEEE J. Sel. Top. Quantum Electron. 22 146Google Scholar

    [5]

    Hasan M I, Akhmediev N, Chang W 2017 Opt. Lett. 42 703Google Scholar

    [6]

    Shen W, Du J, Sun L, Wang C, He Z 2020 J. Lightwave Technol. 38 3874Google Scholar

    [7]

    Liu Z, Karanov B, Galdino L, Hayes J R, Lavery D, Clark K, Shi K, Elson D J, Thomsen B C, Petrovich M N, Richardson D J, Poletti F, Slavik R, Bayvel P 2019 J. Lightwave Technol. 37 909Google Scholar

    [8]

    Michaud-Belleau V, Fokoua E R N, Bradley T, Hayes J R, Slavik R 2021 Optica 8 216Google Scholar

    [9]

    Zhu X, Wu D, Wang Y, Yu F, Li Q, Qi Y, Knight J, Chen S, Hu L 2021 Opt. Express 29 1492Google Scholar

    [10]

    Azendorf F, Schmauss B, Shi B, Fokoua E N, Radan Slavík, Eiselt M 2021 Optical Fiber Communications Conference and Exhibition (OFC) San Francisco, California United States, June 6–10, 2021 p1

    [11]

    Liu W, Zheng Y, Wang Z, Wang Z X, Yang J, Chen M X, Qi M, Rehman S U, Shum P P, Zhu L, Wei L 2021 Adv. Mater. Interfaces 8 2001978Google Scholar

    [12]

    Gérôme F, Cook K T, George A K, Wadsworth W J, Knight J C 2007 Opt. Express 15 7126Google Scholar

    [13]

    Urich A, Maier R R, Yu F, Knight J C, Hand D P, Shephard J D 2013 Biomed. Opt. Express 4 193Google Scholar

    [14]

    Couch D E, Hickstein D D, Winters D G, Backus S J, Kirchner M S, Domingue S R, Ramirez J J, Durfee C G, Murnane M M, Kapteyn H C 2020 Optica 7 832Google Scholar

    [15]

    Poletti F 2014 Opt. Express 22 23807Google Scholar

    [16]

    Cregan R F, Mangan B J, Knight J C, Birks T A, Russell P S, Roberts P J, Allan D C 1999 Science 285 1537Google Scholar

    [17]

    Roberts P, Couny F, Sabert H, Mangan B, Williams D, Farr L, Mason M, Tomlinson A, Birks T, Knight J, Russell S J P 2005 Opt. Express 13 236Google Scholar

    [18]

    Luan F, George A K, Hedley T D, Pearce G J, Bird D M, Knight J C, Russell P S J 2004 Opt. Lett. 29 2369Google Scholar

    [19]

    Wei C, Weiblen R J, Menyuk C R, Hu J 2017 Adv. Opt. Photonics 9 562Google Scholar

    [20]

    Jasion G T, Bradley T, Harrington K, Sakr H, Poletti F 2020 Optical Fiber Communications Conference and Exhibition (OFC) San Diego, California United States, March 8–12, 2020

    [21]

    Osório J H, Amrani F, Delahaye F, Dhaybi A, Vasko K, Melli F, Giovanardi F, Vandembroucq D, Tessier G, Vincetti L, Debord B, Gérôme F, Benabid F 2023 Nat. Commun. 14 1146Google Scholar

    [22]

    Mulvad H C H, Abokhamis Mousavi S, Zuba V, Xu L, Sakr H, Bradley T D, Hayes J R, Jasion G T, Numkam Fokoua E R, Taranta A, Alam S, Richardson D J, Poletti F 2022 Nat. Photonics 16 448Google Scholar

    [23]

    Ding W, Wang Y Y, Gao S, Wang M, Wang P 2020 IEEE J. Sel. Top. Quantum Electron. 26 4400312Google Scholar

    [24]

    Gao S F, Wang Y Y, Ding W, Jiang D, Gu S, Zhang X, Wang P 2018 Nat. Commun. 9 2828Google Scholar

    [25]

    Yue B, Feng J, Tao J, Zhou G, Huang X 2021 Opt. Fiber Technol. 67 102734Google Scholar

    [26]

    Xue L, Sheng X, Jia H, Lou S 2023 J. Lightwave Technol. 41 6043Google Scholar

    [27]

    Belardi W 2015 J. Lightwave Technol. 33 4497Google Scholar

    [28]

    Yan S B, Lou S, Wang X, Zhang W, Zhao T 2018 Opt. Fiber Technol. 46 118Google Scholar

    [29]

    Michieletto M, Lyngsø J K, Jakobsen C, Lægsgaard J, Bang O, Alkeskjold T T 2016 Opt. Express 24 7103Google Scholar

    [30]

    Zhang X, Feng Z, Marpaung D A, Fokoua E R, Sakr H, Hayes J R, Poletti F, Richardson D J, Slavík R 2022 Light Sci. Appl 11 213Google Scholar

    [31]

    Yao C Y, Gao S F, Wang Y Y, Wang P, Jin W, Ren W 2020 J. Lightwave Technol. 38 2067Google Scholar

    [32]

    Ma X X, Li J S, Guo H T, Li S G, Zhang H, Xu Y T, Meng X J, Guo Y, Chen Q, Wang C J, Cui X W 2023 Plasmonics 18 899Google Scholar

    [33]

    Zhang H, Chang Y J, Xu Y T, Liu C Z, Xiao X S, Li J S, Ma X X, Wang Y Y, Guo H T 2023 Opt. Express 31 7659Google Scholar

    [34]

    Zhou Y, Cao R, Wang S, Peng J, Li H, Chu Y, Xing Y, Dai N, Li J 2022 IEEE Photonics J. 14 1Google Scholar

    [35]

    Zhu Y, Wang S, Chen M, Zuo X, Wang H, Rao C, Xu Y, Ji D, Liu Y 2022 IEEE Photonics Technol. Lett. 34 283Google Scholar

    [36]

    Nawazuddin M B, Wheeler N V, Hayes J R, Bradley T D, Sandoghchi S R, Gouveia M A, Jasion G T, Richardson D J, Poletti F 2018 J. Lightwave Technol. 36 1213Google Scholar

    [37]

    Yan S, Lou S, Lian Z, Zhang W, Wang X 2019 J. Lightwave Technol. 37 5707Google Scholar

    [38]

    Luo L W, Ophir N, Chen C P, Gabrielli L H, Poitras C B, Bergmen K, Lipson M 2014 Nat. Commun. 5 3069Google Scholar

    [39]

    Chen Y X, Lin Z J, Bélanger-de Villers S, Rusch L A, Shi W 2020 IEEE J. Sel. Top. Quantum Electron. 26 6100107Google Scholar

    [40]

    Naghshvarianjahromi M, Kumar S, Deen M J, Iwaya T, Kimura K, Yoshida M, Hirooka T, Nakazawa M 2022 IEEE J. Sel. Top. Quantum Electron. 28 7500210Google Scholar

    [41]

    Richardson D J, Fini J M, Nelson L E 2013 Nat. Photonics 7 354Google Scholar

    [42]

    Tarighat A, Hsu R C J, Shah A, Sayed A H, Jalali B 2007 IEEE Commun. Mag. 45 57Google Scholar

    [43]

    Berdagué S, Facq P 1982 Appl. Opt. 21 1950Google Scholar

    [44]

    Habib M S, Antonio-Lopez J E, Markos C, Schülzgen A, Amezcua-Correa R 2019 Opt. Express 27 3824Google Scholar

    [45]

    Habib M S, Bang O, Bache M 2016 Opt. Express 24 8429Google Scholar

    [46]

    Wang Z, Tu J, Liu Z, Yu C, Lu C 2020 J. Lightwave Technol. 38 864Google Scholar

    [47]

    Goel C, Yoo S 2021 J. Lightwave Technol. 39 6592Google Scholar

    [48]

    Ou J, Li J P, Zheng W Q, Qin Y W, Xu O, Huang Q D, Peng D, Xiang M, Xu Y, Fu S N 2022 20th International Conference on Optical Communications and Networks (ICOCN) Shenzhen, China, August 12–15, 2022 p1

    [49]

    Liu H, Wang Y, Zhou Y, Guan Z, Yu Z, Ling Q, Luo S, Shao J, Huang D, Chen D 2022 Opt. Express 30 21833Google Scholar

    [50]

    Vincetti L, Setti V 2012 Opt. Express 20 14350Google Scholar

    [51]

    Zhang J, Wang Z, Chen J 2014 Proc. COMSOL Conf. Shanghai, China 2014 p2

    [52]

    Litchinitser N M, Abeeluck A K, Headley C, Eggleton B J 2002 Opt. Lett. 27 1592Google Scholar

    [53]

    Vincetti L 2016 Opt. Express 24 10313Google Scholar

    [54]

    Chen X, Hu X, Yang L, Peng J, Li H, Dai N, Li J 2019 Opt. Express 27 19548Google Scholar

    [55]

    Wang L, LaRochelle S 2015 Opt. Lett. 40 5846Google Scholar

    [56]

    Nagano K, Kawakami S, Nishida S 1978 Appl. Opt. 17 2080Google Scholar

    [57]

    Belardi W, Knight J C 2014 Opt. Express 22 10091Google Scholar

    [58]

    Pryamikov A D, Biriukov A S, Kosolapov A F, Plotnichenko V G, Semjonov S L, Dianov E M 2011 Opt. Express 19 1441Google Scholar

    [59]

    Yu F, Wadsworth W J, Knight J C 2012 Opt. Express 20 11153Google Scholar

    [60]

    Yang S, Sheng X, Zhao G, Lou S, Guo J 2021 IEEE Access 9 29599Google Scholar

    [61]

    Hayashi J G, Ventura A, Cimek J, Slimen F B, White N, Sakr H, Jasion G T, Wheeler N V, Poletti F 2020 22nd International Conference on Transparent Optical Networks (ICTON) Bari, Italy, July 19–23, 2020 p1

    [62]

    Shaha K S R, Khaleque A 2021 Appl. Opt. 60 6243Google Scholar

    [63]

    Wei C, Weiblen R J, Menyuk C R, Hu J 2017 Adv. Opt. Photonics 9 504Google Scholar

  • [1] Wang Jian, Wu Chong-Qing. Analysis and optimization of few-mode fibers with low differential mode group delay by variational method. Acta Physica Sinica, 2022, 71(9): 094206. doi: 10.7498/aps.71.20212198
    [2] Zhang Yuan, Jiang Wen-Fan, Chen Ming-Yang. Design of ring-core few-mode multi-core fiber with low crosstalk and low bending loss. Acta Physica Sinica, 2022, 71(9): 094205. doi: 10.7498/aps.71.20211534
    [3] Zheng Si-Wen, Liu Ya-Zhuo, Luo Xiao-Ling, Wang Li-Hui, Zhang Na, Zhang Jing-Jing, Jin Chuan-Yang, Xu Bing-Li, Qu Qiang, Chen Ling. Application and analysis of three-layer-core structure in single-mode large-mode-area fiber with low bending loss. Acta Physica Sinica, 2021, 70(22): 224214. doi: 10.7498/aps.70.20210410
    [4] Meng Miao, Yan De-Xian, Li Jiu-Sheng, Sun Shuai. Research on negative curvature terahertz fiber based on nested triangle structure cladding. Acta Physica Sinica, 2020, 69(16): 167801. doi: 10.7498/aps.69.20200457
    [5] Wang Yu-Hao, Wu Bao-Jian, Guo Biao, Wen Feng, Qiu Kun. Research on few-mode PAM regenerator based on nonlinear optical fiber loop mirror. Acta Physica Sinica, 2020, 69(7): 074202. doi: 10.7498/aps.69.20191858
    [6] Wan Feng, Wu Bao-Jian, Cao Ya-Min, Wang Yu-Hao, Wen Feng, Qiu Kun. Analytical method for four wave mixing in space-frequency multiplexing optical fibers. Acta Physica Sinica, 2019, 68(11): 114207. doi: 10.7498/aps.68.20182129
    [7] Xue Yan-Ru, Tian Peng-Fei, Jin Wa, Zhao Neng, Jin Yun, Bi Wei-Hong. Superimposed long period gratings based mode converter in few-mode fiber. Acta Physica Sinica, 2019, 68(5): 054204. doi: 10.7498/aps.68.20181674
    [8] Luo Xue-Xue, Tao Ru-Mao, Liu Zhi-Wei, Shi Chen, Zhang Han-Wei, Wang Xiao-Lin, Zhou Pu, Xu Xiao-Jun. Quasi-static mode instability in few-mode fiber amplifier. Acta Physica Sinica, 2018, 67(14): 144203. doi: 10.7498/aps.67.20180140
    [9] Jin Wen-Xing, Ren Guo-Bin, Pei Li, Jiang You-Chao, Wu Yue, Shen Ya, Yang Yu-Guang, Ren Wen-Hua, Jian Shui-Sheng. Dual-mode large-mode-area multi-core fiber with circularly arranged airhole cores. Acta Physica Sinica, 2017, 66(2): 024210. doi: 10.7498/aps.66.024210
    [10] Zhang Yan-Jun, Gao Hao-Lei, Fu Xing-Hu, Tian Yong-Sheng. Characterization of Brillouin scattering in a few-mode fiber. Acta Physica Sinica, 2017, 66(2): 024207. doi: 10.7498/aps.66.024207
    [11] Zheng Xing-Juan, Ren Guo-Bin, Huang Lin, Zheng He-Ling. Study on bending losses of few-mode optical fibers. Acta Physica Sinica, 2016, 65(6): 064208. doi: 10.7498/aps.65.064208
    [12] Jiang Shan-Shan, Liu Yan, Xing Er-Jun. Finite element analysis and design of few mode fiber with low differential mode delay. Acta Physica Sinica, 2015, 64(6): 064212. doi: 10.7498/aps.64.064212
    [13] Xiao Ya-Ling, Liu Yan-Ge, Wang Zhi, Liu Xiao-Qi, Luo Ming-Ming. Design and experimental study of mode selective all-fiber fused mode coupler based on few mode fiber. Acta Physica Sinica, 2015, 64(20): 204207. doi: 10.7498/aps.64.204207
    [14] Liao Wen-Ying, Fan Wan-De, Li Yuan, Chen Jun, Bu Fan-Hua, Li Hai-Peng, Wang Xin-Ya, Huang Ding-Ming. Investigation of a novel all-solid large-mode-area photonic quasi-crystal fiber. Acta Physica Sinica, 2014, 63(3): 034206. doi: 10.7498/aps.63.034206
    [15] Zheng Si-Wen, Lin Zhen, Ren Guo-Bin, Jian Shui-Sheng. Design and analysis of novel multi-core dual-mode large-mode-area optical fiber. Acta Physica Sinica, 2013, 62(4): 044224. doi: 10.7498/aps.62.044224
    [16] Yao Shu-Chang, Fu Song-Nian, Zhang Min-Ming, Tang Ming, Shen Ping, Liu De-Ming. Demodulation and multi-input multi-output equalization for mode division multiplexing system using a novel few-mode fiber. Acta Physica Sinica, 2013, 62(14): 144215. doi: 10.7498/aps.62.144215
    [17] Lin Zhen, Zheng Si-Wen, Ren Guo-Bin, Jian Shui-Sheng. Characterization and comparison of 7-core and 19-core large-mode-area few-mode fibers. Acta Physica Sinica, 2013, 62(6): 064214. doi: 10.7498/aps.62.064214
    [18] Guo Yan-Yan, Hou Lan-Tian. Design of all-solid octagon photonic crystal fiber with large mode area. Acta Physica Sinica, 2010, 59(6): 4036-4041. doi: 10.7498/aps.59.4036
    [19] Wang Jian, Lei Nai-Guang, Yu Chong-Xiu. Analysis of confinement loss in microstructured optical fibers with elliptical air holes. Acta Physica Sinica, 2007, 56(2): 946-951. doi: 10.7498/aps.56.946
    [20] Li Shu-Guang, Xing Guang-Long, Zhou Gui-Yao, Hou Lan-Tian. Numerical simulation of square-lattice photonic crystal fiber with high birefringence and low confinement loss. Acta Physica Sinica, 2006, 55(1): 238-243. doi: 10.7498/aps.55.238
Metrics
  • Abstract views:  2341
  • PDF Downloads:  90
  • Cited By: 0
Publishing process
  • Received Date:  10 November 2023
  • Accepted Date:  13 January 2024
  • Available Online:  16 January 2024
  • Published Online:  05 April 2024

/

返回文章
返回