-
In recent years, the transmission capacity of wavelength division multiplexing (WDM) communication systems has gradually approached to the nonlinear Shannon limit. To meet the increasing demand for communication capacity, space division multiplexing (SDM) has become one of the most concerned technologies. In this paper, the four-wave mixing process (FWM) in fibers is considered from the frequency domain to the mode division multiplexing (MDM) spatial domain under pump depletion and the exact analytical solution to the FWM coupled-mode equations in the space-frequency domain is in detail deduced. The analytical method is verified by numerically calculating the amplitude and phase evolution of the idler wave in non-degenerate four-wave mixing. We discuss three new applications of the analytical solution as follows. 1) Using the phase matching condition we select the terms in the multi-wave coupling equation, and only retain the coupling term that plays a major role. According to the analytical solution in this paper, the phase matching percentage parameter is introduced to determine the FWM coupling terms necessary for multi-wave coupling equations, thus simplifying the multi-wave coupling problem in the study. 2) Combining the analytical solution with the numerical calculation results, we find the initial phase relationship between the output idler and the input guided wave for phase-insensitive FWM, and we provide the analytical expression for a theoretical basis to efficiently design the FWM-based phase arithmetic devices in parallel operating at WDM and MDM systems. 3) We propose a nonlinear compensation algorithm based on analytical solution, which can be used in the few-mode transmission system. The algorithm can fast evaluate or compensate for the fiber nonlinearity by taking into account the pump depletion of the FWM effect. Compared with the traditional digital back propagation (DBP) algorithm, our algorithm has the advantage of lower complexity.
-
Keywords:
- space division multiplexing /
- few mode fiber /
- four-wave mixing /
- analytic solution
[1] Ellis A D, Zhao J, Cotter D 2010 J. Lightwave Technol. 28 423Google Scholar
[2] Ellis A D, McCarthy M E, Khateeb M A Z A, Sorokina M, Doran N J 2017 Adv. Opt. Photonics 9 429Google Scholar
[3] Richardson D J, Fini J M, Nelson L E 2013 Nat. Photonics 7 354Google Scholar
[4] Li G, Bai N, Zhao N, Xia C 2014 Adv. Opt. Photonics 6 413Google Scholar
[5] Mizuno T, Takara H, Sano A, Miyamoto Y 2016 J. Lightwave Technol. 34 582Google Scholar
[6] 郑兴娟, 任国斌, 黄琳, 郑鹤玲 2016 物理学报 65 064208Google Scholar
Zheng X J, Ren G B, Huang L, Zheng H L 2016 Acta Phys. Sin. 65 064208Google Scholar
[7] Rademacher G, Ryf R, Fontaine N K, Chen H, Essiambre R, Puttnam B J, Luís R S, Awaji Y, Wada N, Gross S, Riesen N, Withford M, Sun Y, Lingle R 2018 J. Lightwave Technol. 36 1382Google Scholar
[8] Kitayama K, Diamantopoulos N 2017 IEEE Commun. Mag. 55 163
[9] Nazemosadat E, Lorences-Riesgo A, Karlsson M, Andrekson P A 2017 J. Lightwave Technol. 35 2810Google Scholar
[10] 姚殊畅, 付松年, 张敏明, 唐明, 沈平, 刘德明 2013 物理学报 62 144215Google Scholar
Yao S C, Fu S N, Zhang M M, Tang M, Shen P, Liu D M 2013 Acta Phys. Sin. 62 144215Google Scholar
[11] Essiambre R J, Kramer G, Winzer P J, Foschini G J, Goebel B 2010 J. Lightwave Technol. 28 662Google Scholar
[12] Mumtaz S, Essiambre R J, Agrawal G P 2013 J. Lightwave Technol. 31 398Google Scholar
[13] Suibhne N M, Ellis A D, Gunning F C G, Sygletos S 2013 39th European Conference and Exhibition on Optical Communication London, UK, September 22−26, 2013 p882
[14] Essiambre R J, Mestre M A, Ryf R, Gnauck A H, Tkach R W, Chraplyvy A R, Sun Y, Jiang X, Lingle Jr R 2013 IEEE Photonics Technol. Lett. 25 539Google Scholar
[15] Rademacher G, Petermann K 2016 J. Lightwave Technol. 34 2280Google Scholar
[16] Trichili A, Zghal M, Palmieri L, Santagiustina M 2017 IEEE Photonics J. 9 1
[17] Marhic M E 2013 J. Opt. Soc. Am. B 30 62Google Scholar
[18] 曹亚敏, 武保剑, 万峰, 邱昆 2018 物理学报 67 094208Google Scholar
Cao Y M, Wu B J, Wan F, Qiu K 2018 Acta Phys. Sin. 67 094208Google Scholar
[19] Poletti F, Horak P 2008 J. Opt. Soc. Am. B 25 1645Google Scholar
[20] Ferreira F, Jansen S, Monteiro P, Silva H 2012 IEEE Photonics Technol. Lett. 24 240Google Scholar
[21] Antonelli C, Shtaif M, Mecozzi A 2016 J. Lightwave Technol. 34 36Google Scholar
[22] Rademacher G, Warm S, Petermann K 2012 IEEE Photonics Technol. Lett. 24 1929Google Scholar
[23] Agrawal G P 2005 Nonlinear Fiber Optics (New York: Academic Press) pp195−211
[24] Xiao Y, Essiambre R J, Desgroseilliers M, Tulino A M, Ryf R, Mumtaz S, Agrawal G P 2014 Opt. Express 22 32039Google Scholar
[25] Brehler M, Schirwon M, Göddeke D, Krummrich P M 2017 J. Lightwave Technol. 35 3622Google Scholar
[26] Hu X, Wang A, Zeng M, Long Y, Zhu L, Fu L, Wang J 2016 Sci. Rep. 6 32911Google Scholar
[27] Wang A, Hu X, Zhu L, Zeng M, Fu L, Wang J 2015 Opt. Express 23 31728Google Scholar
[28] Gui C, Wang J 2014 Sci. Rep. 4 7491
[29] Wang J, Yang J Y, Huang H, Willner A E 2013 Opt. Express 21 488Google Scholar
[30] Wang J, Yang J, Wu X, Willner A E 2012 J. Lightwave Technol. 30 2890Google Scholar
[31] Wang J, Nuccio S R, Yang J Y, Wu X, Bogoni A, Willner A E 2012 Opt. Lett. 37 1139Google Scholar
[32] Tsang M, Psaltis D, Omenetto F G 2003 Opt. Lett. 28 1873Google Scholar
[33] Mateo E F, Zhou X, Li G 2011 Opt. Express 19 570Google Scholar
-
表 1 模场的归一化交叠积分参数
Table 1. Normalized overlap integral parameters of mode fields.
模场分布 flmnp/fLP01/arb.units 4束光都为LP01模 1.000 4束光都为LP11a或LP11b模 0.747 2束光为LP01模、2束光为LP11a或LP11b模 0.496 2束光为LP11a模、2束光为LP11b模 0.249 -
[1] Ellis A D, Zhao J, Cotter D 2010 J. Lightwave Technol. 28 423Google Scholar
[2] Ellis A D, McCarthy M E, Khateeb M A Z A, Sorokina M, Doran N J 2017 Adv. Opt. Photonics 9 429Google Scholar
[3] Richardson D J, Fini J M, Nelson L E 2013 Nat. Photonics 7 354Google Scholar
[4] Li G, Bai N, Zhao N, Xia C 2014 Adv. Opt. Photonics 6 413Google Scholar
[5] Mizuno T, Takara H, Sano A, Miyamoto Y 2016 J. Lightwave Technol. 34 582Google Scholar
[6] 郑兴娟, 任国斌, 黄琳, 郑鹤玲 2016 物理学报 65 064208Google Scholar
Zheng X J, Ren G B, Huang L, Zheng H L 2016 Acta Phys. Sin. 65 064208Google Scholar
[7] Rademacher G, Ryf R, Fontaine N K, Chen H, Essiambre R, Puttnam B J, Luís R S, Awaji Y, Wada N, Gross S, Riesen N, Withford M, Sun Y, Lingle R 2018 J. Lightwave Technol. 36 1382Google Scholar
[8] Kitayama K, Diamantopoulos N 2017 IEEE Commun. Mag. 55 163
[9] Nazemosadat E, Lorences-Riesgo A, Karlsson M, Andrekson P A 2017 J. Lightwave Technol. 35 2810Google Scholar
[10] 姚殊畅, 付松年, 张敏明, 唐明, 沈平, 刘德明 2013 物理学报 62 144215Google Scholar
Yao S C, Fu S N, Zhang M M, Tang M, Shen P, Liu D M 2013 Acta Phys. Sin. 62 144215Google Scholar
[11] Essiambre R J, Kramer G, Winzer P J, Foschini G J, Goebel B 2010 J. Lightwave Technol. 28 662Google Scholar
[12] Mumtaz S, Essiambre R J, Agrawal G P 2013 J. Lightwave Technol. 31 398Google Scholar
[13] Suibhne N M, Ellis A D, Gunning F C G, Sygletos S 2013 39th European Conference and Exhibition on Optical Communication London, UK, September 22−26, 2013 p882
[14] Essiambre R J, Mestre M A, Ryf R, Gnauck A H, Tkach R W, Chraplyvy A R, Sun Y, Jiang X, Lingle Jr R 2013 IEEE Photonics Technol. Lett. 25 539Google Scholar
[15] Rademacher G, Petermann K 2016 J. Lightwave Technol. 34 2280Google Scholar
[16] Trichili A, Zghal M, Palmieri L, Santagiustina M 2017 IEEE Photonics J. 9 1
[17] Marhic M E 2013 J. Opt. Soc. Am. B 30 62Google Scholar
[18] 曹亚敏, 武保剑, 万峰, 邱昆 2018 物理学报 67 094208Google Scholar
Cao Y M, Wu B J, Wan F, Qiu K 2018 Acta Phys. Sin. 67 094208Google Scholar
[19] Poletti F, Horak P 2008 J. Opt. Soc. Am. B 25 1645Google Scholar
[20] Ferreira F, Jansen S, Monteiro P, Silva H 2012 IEEE Photonics Technol. Lett. 24 240Google Scholar
[21] Antonelli C, Shtaif M, Mecozzi A 2016 J. Lightwave Technol. 34 36Google Scholar
[22] Rademacher G, Warm S, Petermann K 2012 IEEE Photonics Technol. Lett. 24 1929Google Scholar
[23] Agrawal G P 2005 Nonlinear Fiber Optics (New York: Academic Press) pp195−211
[24] Xiao Y, Essiambre R J, Desgroseilliers M, Tulino A M, Ryf R, Mumtaz S, Agrawal G P 2014 Opt. Express 22 32039Google Scholar
[25] Brehler M, Schirwon M, Göddeke D, Krummrich P M 2017 J. Lightwave Technol. 35 3622Google Scholar
[26] Hu X, Wang A, Zeng M, Long Y, Zhu L, Fu L, Wang J 2016 Sci. Rep. 6 32911Google Scholar
[27] Wang A, Hu X, Zhu L, Zeng M, Fu L, Wang J 2015 Opt. Express 23 31728Google Scholar
[28] Gui C, Wang J 2014 Sci. Rep. 4 7491
[29] Wang J, Yang J Y, Huang H, Willner A E 2013 Opt. Express 21 488Google Scholar
[30] Wang J, Yang J, Wu X, Willner A E 2012 J. Lightwave Technol. 30 2890Google Scholar
[31] Wang J, Nuccio S R, Yang J Y, Wu X, Bogoni A, Willner A E 2012 Opt. Lett. 37 1139Google Scholar
[32] Tsang M, Psaltis D, Omenetto F G 2003 Opt. Lett. 28 1873Google Scholar
[33] Mateo E F, Zhou X, Li G 2011 Opt. Express 19 570Google Scholar
Catalog
Metrics
- Abstract views: 10034
- PDF Downloads: 76
- Cited By: 0