Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Self-organized critical behavior in plastic flow of amorphous solids

Sun Bao-An Wang Li-Feng Shao Jian-Hua

Citation:

Self-organized critical behavior in plastic flow of amorphous solids

Sun Bao-An, Wang Li-Feng, Shao Jian-Hua
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Amorphous solids are metastable materials formed by the rapid quenching of liquid melts. Under mechanical stress, amorphous solid displays unique and complex plastic flow behavior, which is both spatially and temporally inhomogeneous on different length scales. In some cases, the plastic flow behavior of amorphous solid can evolve into the self-organized critical state, which is similar to many complex phenomena in nature and physics such as earthquakes, snow avelanches, motions of magnetic walls, etc. In this paper, we briefly review the recent research progress of the plastic flows of amorphous solids, with an emphasis on the plastic flow of metallic glass which has been one of our research foci in past few years. The review begins with an introduction of the inhomogeneous flow behaviors on different scales, from the macroscopical-scale spatially inhomogeous shear bands, temporally intermittent serrated flow to the atomic-scale localized viscoelastic behavior in metallic glass. The microscopical deformation theories including free volume model and shear transformation zone model, and recent efforts to elucidate macrosopical flow behaviors with these theories, are also presented. Finally, recent progress of the self-organized critical (SOC) behaviors of the plastic flow of metallic glass are reviewed, with an emphasis on its experimental characterizations and the underlying physics. The emergence of SOC in the plastic flow is closely related to the interactions between plastic flow carriers, and based on this point, the relation between the SOC behavior and the plasticity of metallic glass is elucidated. The implications of plastic flow of metallic glass for understanding the occurence of earthquakes are also discussed. The review is also concluded with some perspertives and unsolved issues for the plastic flow of amorphous solids.
      Corresponding author: Sun Bao-An, baoansun@njust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51671121, 51601002, 51520105001) and the Fundamental Research Funds for the Central Universities of China (Grant No. 30917015107).
    [1]

    Wang W H 2013 Prog. Phys. 33 177 (in Chinese) [汪卫华 2013 物理学进展 33 177]

    [2]

    Klement W, Willens R, Duwez P 1960 Nature 187 869

    [3]

    Wang W H, Dong C, Shek C H 2004 Mater. Sci. Eng. R 44 55

    [4]

    Greer A L 1995 Science 267 1947

    [5]

    Ma Y F, Tang B Z, Xia L, Ding D 2016 Chin. Phys. Lett. 33 126101

    [6]

    Inoue A 2000 Acta Mater. 48 279

    [7]

    Schuh C A, Hufnag T C, Ramamurty U 2007 Acta Mater. 55 4067

    [8]

    Sun B A, Yu H B, Zhao D Q, Bai H Y, Wang W H 2010 Phys. Rev. Lett. 105 035501

    [9]

    Sun B A 2010 Ph. D. Dissertation (Beijing: Chinese Academy of Science) (in Chinese) [孙保安 2010 博士学位论文(北京: 中国科学院]

    [10]

    Spaepen F 1977 Acta Metall. 25 407

    [11]

    Chen M W, Inoue A, Zhang W, Sakurai T 2006 Phys. Rev. Lett. 96 245502

    [12]

    Greer A L, Cheng Y Q, Ma E 2013 Mater. Sci. Eng. R 74 71

    [13]

    Argon A S 1979 Acta Mater. 27 47

    [14]

    Lewandowski J J, Greer A L 2005 Nat. Mater. 5 18

    [15]

    Wright W J, Samale M W, Hufnagel, LeBlanc M M, Florando J N 2011 Acta Mater. 57 4639

    [16]

    Bruck H A, Rosakis A J, Johnson W L 1996 J. Mater. Res. 11 503

    [17]

    Jiang W H, Liao H H, Liu F X, Choo H, Liaw P K 2008 Metall. Mater. Trans A 39 1822

    [18]

    Ye J C, Lu J, Liu C T, Yang Y 2010 Nat. Mater. 9 619

    [19]

    Demetriou M D, Launey M E, Garrett G, Schramm J P, Hoffmann D C, Johnson W L, Ritchie R O 2011 Nat. Mater. 10 123

    [20]

    Jiang M Q, Lan H D 2009 J. Mech. Phys. Solids 57 1267

    [21]

    Park K W, Lee C M, Wakeda M, Shibutani Y, Falk M L, Lee J C 2008 Acta Mater. 56 5440

    [22]

    Lu Z, Jiao W, Wang W H, Bai H Y 2014 Phys. Rev. Lett. 113 045501

    [23]

    Huo L S, Zeng J F, Wang W H, Liu C T, Yang Y 2013 Acta Mater. 61 4329

    [24]

    Schuh C A, Nieh T G 2003 Acta Mater. 51 87

    [25]

    Wang Z, Qiao J W, Tian H, Sun B A, Wang B C, Xu B S, Chen M W 2015 Appl. Phys. Lett. 107 201902

    [26]

    Song S X, Bei H, Wadsworth J, Nieh T G 2008 Intermetallics 16 813

    [27]

    Sun B A, Pauly S, Hu J, Wang W H, Kuhn U, Eckert J 2013 Phys. Rev. Lett. 110 225501

    [28]

    Dubach A, Torre F H D, Löffler J F 2009 Acta Mater. 57 881

    [29]

    Hu J, Sun B A, Yang Y, Liu C T, Pauly S, Weng Y X, Eckert J 2015 Intermetallics 66 31

    [30]

    Qiao J W, Zhang Y, Liaw P K 2010 Intermetallics 18 2057

    [31]

    Maloney C, Lemaitre A 2004 Phys. Rev. Lett. 93 016001

    [32]

    Johnson W L, Samwer K 2005 Phys. Rev. Lett. 95 195501

    [33]

    Falk M L, Langer J S 1997 Phys. Rev. E 57 7192

    [34]

    Langer J S 2004 Phys. Rev. E 70 041502

    [35]

    Wang W H, Yang Y, Nieh T G, Liu C T 2015 Intermetallics 67 81

    [36]

    Manning M L, Langer J S, Carlson J M 2007 Phys. Rev. E 76 056106

    [37]

    Sun B A, Yang Y, Wang W H, Liu C T 2016 Sci. Rep. 6 21388

    [38]

    Furukawa A, Tanaka H 2009 Nat. Mater. 8 601

    [39]

    Bak P, Tang C, Wiesenfeld K 1987 Phys. Rev. Lett. 59 381

    [40]

    Bak P 1996 How Nature Works: The Science of Self-Organized Criticality (New York: Copernicus Press) p10

    [41]

    Sammonds 2005 Nat. Mater. 4 425

    [42]

    Ananthakrishna G, Noronha J, Fressengeas C, Kubin L P 1999 Phys. Rev. E 60 5455

    [43]

    Ren J L, Chen C, Wang G, Mattern N, Eckert J 2011 AIP Adv. 1 032158

    [44]

    Wang G, Chan K C, Xia L, Yu P, Shen J, Wang W H 2009 Acta Mater. 57 6146

    [45]

    Cannelli C, Cantelli R, Cordero F 1993 Phys. Rev. Lett. 70 3923

    [46]

    Sarmah R, Ananthakrishna G, Sun B A, Wang W H 2011 Acta Mater. 59 4482

    [47]

    Sun B A, Wang W H 2011 Appl. Phys. Lett. 98 201902

    [48]

    Peng H L, Li M Z, Sun B A, Wang W H 2012 J. Appl. Phys. 112 023516

    [49]

    Maloney C, Lemaitre A 2004 Phys. Rev. E 74 016118

    [50]

    Dasgupta R, George H, Hentschel E, Procaccia I 2012 Phys. Rev. Lett. 109 255502

  • [1]

    Wang W H 2013 Prog. Phys. 33 177 (in Chinese) [汪卫华 2013 物理学进展 33 177]

    [2]

    Klement W, Willens R, Duwez P 1960 Nature 187 869

    [3]

    Wang W H, Dong C, Shek C H 2004 Mater. Sci. Eng. R 44 55

    [4]

    Greer A L 1995 Science 267 1947

    [5]

    Ma Y F, Tang B Z, Xia L, Ding D 2016 Chin. Phys. Lett. 33 126101

    [6]

    Inoue A 2000 Acta Mater. 48 279

    [7]

    Schuh C A, Hufnag T C, Ramamurty U 2007 Acta Mater. 55 4067

    [8]

    Sun B A, Yu H B, Zhao D Q, Bai H Y, Wang W H 2010 Phys. Rev. Lett. 105 035501

    [9]

    Sun B A 2010 Ph. D. Dissertation (Beijing: Chinese Academy of Science) (in Chinese) [孙保安 2010 博士学位论文(北京: 中国科学院]

    [10]

    Spaepen F 1977 Acta Metall. 25 407

    [11]

    Chen M W, Inoue A, Zhang W, Sakurai T 2006 Phys. Rev. Lett. 96 245502

    [12]

    Greer A L, Cheng Y Q, Ma E 2013 Mater. Sci. Eng. R 74 71

    [13]

    Argon A S 1979 Acta Mater. 27 47

    [14]

    Lewandowski J J, Greer A L 2005 Nat. Mater. 5 18

    [15]

    Wright W J, Samale M W, Hufnagel, LeBlanc M M, Florando J N 2011 Acta Mater. 57 4639

    [16]

    Bruck H A, Rosakis A J, Johnson W L 1996 J. Mater. Res. 11 503

    [17]

    Jiang W H, Liao H H, Liu F X, Choo H, Liaw P K 2008 Metall. Mater. Trans A 39 1822

    [18]

    Ye J C, Lu J, Liu C T, Yang Y 2010 Nat. Mater. 9 619

    [19]

    Demetriou M D, Launey M E, Garrett G, Schramm J P, Hoffmann D C, Johnson W L, Ritchie R O 2011 Nat. Mater. 10 123

    [20]

    Jiang M Q, Lan H D 2009 J. Mech. Phys. Solids 57 1267

    [21]

    Park K W, Lee C M, Wakeda M, Shibutani Y, Falk M L, Lee J C 2008 Acta Mater. 56 5440

    [22]

    Lu Z, Jiao W, Wang W H, Bai H Y 2014 Phys. Rev. Lett. 113 045501

    [23]

    Huo L S, Zeng J F, Wang W H, Liu C T, Yang Y 2013 Acta Mater. 61 4329

    [24]

    Schuh C A, Nieh T G 2003 Acta Mater. 51 87

    [25]

    Wang Z, Qiao J W, Tian H, Sun B A, Wang B C, Xu B S, Chen M W 2015 Appl. Phys. Lett. 107 201902

    [26]

    Song S X, Bei H, Wadsworth J, Nieh T G 2008 Intermetallics 16 813

    [27]

    Sun B A, Pauly S, Hu J, Wang W H, Kuhn U, Eckert J 2013 Phys. Rev. Lett. 110 225501

    [28]

    Dubach A, Torre F H D, Löffler J F 2009 Acta Mater. 57 881

    [29]

    Hu J, Sun B A, Yang Y, Liu C T, Pauly S, Weng Y X, Eckert J 2015 Intermetallics 66 31

    [30]

    Qiao J W, Zhang Y, Liaw P K 2010 Intermetallics 18 2057

    [31]

    Maloney C, Lemaitre A 2004 Phys. Rev. Lett. 93 016001

    [32]

    Johnson W L, Samwer K 2005 Phys. Rev. Lett. 95 195501

    [33]

    Falk M L, Langer J S 1997 Phys. Rev. E 57 7192

    [34]

    Langer J S 2004 Phys. Rev. E 70 041502

    [35]

    Wang W H, Yang Y, Nieh T G, Liu C T 2015 Intermetallics 67 81

    [36]

    Manning M L, Langer J S, Carlson J M 2007 Phys. Rev. E 76 056106

    [37]

    Sun B A, Yang Y, Wang W H, Liu C T 2016 Sci. Rep. 6 21388

    [38]

    Furukawa A, Tanaka H 2009 Nat. Mater. 8 601

    [39]

    Bak P, Tang C, Wiesenfeld K 1987 Phys. Rev. Lett. 59 381

    [40]

    Bak P 1996 How Nature Works: The Science of Self-Organized Criticality (New York: Copernicus Press) p10

    [41]

    Sammonds 2005 Nat. Mater. 4 425

    [42]

    Ananthakrishna G, Noronha J, Fressengeas C, Kubin L P 1999 Phys. Rev. E 60 5455

    [43]

    Ren J L, Chen C, Wang G, Mattern N, Eckert J 2011 AIP Adv. 1 032158

    [44]

    Wang G, Chan K C, Xia L, Yu P, Shen J, Wang W H 2009 Acta Mater. 57 6146

    [45]

    Cannelli C, Cantelli R, Cordero F 1993 Phys. Rev. Lett. 70 3923

    [46]

    Sarmah R, Ananthakrishna G, Sun B A, Wang W H 2011 Acta Mater. 59 4482

    [47]

    Sun B A, Wang W H 2011 Appl. Phys. Lett. 98 201902

    [48]

    Peng H L, Li M Z, Sun B A, Wang W H 2012 J. Appl. Phys. 112 023516

    [49]

    Maloney C, Lemaitre A 2004 Phys. Rev. E 74 016118

    [50]

    Dasgupta R, George H, Hentschel E, Procaccia I 2012 Phys. Rev. Lett. 109 255502

  • [1] Li Lin-Li,  Xue Chun-Xia. Chaotic motion of piezoelectric material hyperbolic shell under thermoelastic coupling. Acta Physica Sinica, 2019, 68(1): 010501. doi: 10.7498/aps.68.20181714
    [2] Qiu Chen-Lin, Cheng Li. A chaotic analyzing method based on the dependence of neighbor sub-sequences in the data series. Acta Physica Sinica, 2016, 65(3): 030503. doi: 10.7498/aps.65.030503
    [3] Wang Xiang-Li, Wang Bin, Wang Wen-Bo, Yu Min. Extractraction of non-stationary harmonic from chaotic background based on synchrosqueezed wavelet transform. Acta Physica Sinica, 2016, 65(20): 200202. doi: 10.7498/aps.65.200202
    [4] Meng Fan-Jing, Liu Kun. Velocity fluctuation and self diffusion character in a dense granular sheared flow studied by discrete element method. Acta Physica Sinica, 2014, 63(13): 134502. doi: 10.7498/aps.63.134502
    [5] Jiang Ze-Hui, Han Hong, Li Xiao-Ran, Wang Fu-Li. Effect of air damping on dynemical behaviors of a completely inelastic bouncing ball. Acta Physica Sinica, 2012, 61(24): 240502. doi: 10.7498/aps.61.240502
    [6] Zhou Zhi-Gang, Shi Yu-Ren, Liu Cong-Bo, Wang Guang-Hui, Yang Hong-Juan. Study on the dynamics of an inelastic bouncing ball. Acta Physica Sinica, 2012, 61(20): 200501. doi: 10.7498/aps.61.200501
    [7] Jiang Hai-Bo, Zhang Li-Ping, Chen Zhang-Yao, Bi Qin-Sheng. Non-smooth bifurcation analysis of Chen system via impulsive force. Acta Physica Sinica, 2012, 61(8): 080505. doi: 10.7498/aps.61.080505
    [8] Zang Du-Yang, Zhang Yong-Jian. Interfacial rheological study of silica nanoparticle monolayer by an indentation approach. Acta Physica Sinica, 2012, 61(2): 026803. doi: 10.7498/aps.61.026803
    [9] Xin Bao-Gui, Chen Tong, Liu Yan-Qin. Complexity evolvement of a chaotic fractional-orderfinancial system. Acta Physica Sinica, 2011, 60(4): 048901. doi: 10.7498/aps.60.048901
    [10] Langevin Dominique, Zhang Yong-Jian, Zang Du-Yang. Rheological study of silica nanoparticle monolayers via two orthogonal Wilhelmy plates. Acta Physica Sinica, 2011, 60(7): 076801. doi: 10.7498/aps.60.076801
    [11] Pang Hao, Yang Yu, Wang Zan-Ji. Simulation of magnetic end effect of amorphous wires. Acta Physica Sinica, 2010, 59(7): 5049-5054. doi: 10.7498/aps.59.5049
    [12] Wang Wei, Zhang Qi-Chang, Wang Xue-Jiao. The application of the undetermined fundamental frequency for analyzing the critical value of chaos. Acta Physica Sinica, 2009, 58(8): 5162-5168. doi: 10.7498/aps.58.5162
    [13] Sun Ke-Hui, Tan Guo-Qiang, Sheng Li-Yuan. The complexity analysis of TD-ERCS discrete chaotic pseudo-random sequences. Acta Physica Sinica, 2008, 57(6): 3359-3366. doi: 10.7498/aps.57.3359
    [14] Jin Jian-Xiu, Qiu Shui-Sheng, Xie Li-Ying, Feng Ming-Ku. A method of detecting the unpredictability of chaotic signals based on periodic orbit statistics. Acta Physica Sinica, 2008, 57(5): 2743-2749. doi: 10.7498/aps.57.2743
    [15] Pang Hao, Li Gen, Wang Zan-Ji. Analysis of magnetoimpedance in amorphous wire passing through a magnetic ring. Acta Physica Sinica, 2008, 57(11): 7194-7199. doi: 10.7498/aps.57.7194
    [16] Jiang Ze-Hui, Zheng Rui-Hua, Zhao Hai-Fa, Wu Jing. Dynamical behavior of a completely inelastic ball bouncing on a vibrating plate. Acta Physica Sinica, 2007, 56(7): 3727-3732. doi: 10.7498/aps.56.3727
    [17] Zhou Hai-Ping, Cai Shao-Hong, Wang Chun-Xiang. Self-organized criticality in one-dimensional sandpile model with avalanche probability included. Acta Physica Sinica, 2006, 55(7): 3355-3359. doi: 10.7498/aps.55.3355
    [18] Gao Chuan-Hou, Zhou Zhi-Min, Shao Zhi-Jiang. Chaotic analysis for blast furnace ironmaking process. Acta Physica Sinica, 2005, 54(4): 1490-1494. doi: 10.7498/aps.54.1490
    [19] Ju Rui, Zhang Ya-Jun, Huang Hong-Bin, Zhao Huan. Dynamics of nonphase-locking Lorenz-Haken equation. Acta Physica Sinica, 2004, 53(7): 2191-2196. doi: 10.7498/aps.53.2191
    [20] Luo Shi-Yu, Tan Yong-Ming, Shao Ming-Zhu, Wei Luo-Xia, Deng Li-Hu. Motion damping in channelling effects and the chaotic behaviour of a system. Acta Physica Sinica, 2004, 53(4): 1157-1161. doi: 10.7498/aps.53.1157
Metrics
  • Abstract views:  6666
  • PDF Downloads:  414
  • Cited By: 0
Publishing process
  • Received Date:  26 May 2017
  • Accepted Date:  24 June 2017
  • Published Online:  05 September 2017

/

返回文章
返回