Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical exact diagonalization of singularity in the ground state of two-dimensional hydrogen atom

Liu Chu-Hang Qiang Bai-Qiang Ji Yu-Chen Li Wei

Citation:

Numerical exact diagonalization of singularity in the ground state of two-dimensional hydrogen atom

Liu Chu-Hang, Qiang Bai-Qiang, Ji Yu-Chen, Li Wei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • With the development of computing technology, numerical exact diagonalization method plays a vital role in modern computational condensed matter physics, especially in the research area of strongly correlated electron systems:it becomes a benchmark for other numerical computational techniques, such as quantum Monte Carlo, numerical renormalization group, density matrix renormalization group, and dynamic mean field theory. In this paper, we first numerically exactly diagonalize the three-dimensional hydrogen atom with the combination of finite-difference method, and find that the numerical wave function of ground state is in good agreement with the analytical calculations. We then turn to discuss the space dimension confinement hydrogen system, two-dimensional hydrogen atom, and notice that the numerical wave function is no longer in agreement with the analytical calculation, where the ground state wave function has a numerical singularity as radius approaches to zero. Compared with the case of the three-dimensional hydrogen atom, this issue mainly comes from the nature of space dimension confinement. To resolve such an issue of numerical singularity in two-dimensional hydrogen atom, we need to construct a new discrete and normalized Bessel function as a basis to study the ground state behavior of dimension confinement system based on the framework of Lanczos-type numerical exact diagonalization. The constructed normalized Bessel basis is orthogonal and discrete, and thus becomes suitable for practical calculation. Besides, these prominent properties of such a Bessel basis greatly reduce the complexity and difficulty in practical calculation, and thus makes computing work efficient. In addition, Lanczos-type numerical exact diagonalization method can extremely speed up the process of solving the eigenvalue equation. As a result, such a high efficient calculation of our method demonstrates the consistence between numerical and analytical ground state energy value, and the corresponding wave function with enough truncated basis number. Since this kind of numerical singularity occurs in many space dimension confinement systems, our finding for constructing a new discrete Bessel basis function may be helpful in studying the quantum systems with numerical singularity behaviors in wavefunctions in future. On the other hand, it should be pointed out that the Bessel basis is incorporated into the linear augment plane wave method in the density functional theory to study the electronic band structure of the condensed material and obtain high accurate results, especially in the theoretical prediction of topological insulators and in experimental realization as well.
      Corresponding author: Li Wei, liweiphysics@gmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11404359) and the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2016215).
    [1]

    Fehske H, Schneider R, Weibe A 2008 Computational Many-Particle Physics (Berlin:Springer) p529

    [2]

    Lin H Q 1990 Phys. Rev. B 42 6561

    [3]

    Regnault N, Bernevig B A 2011 Phys. Rev. X 1 021014

    [4]

    Tang E, Mei J W, Wen X G 2011 Phys. Rev. Lett. 106 236802

    [5]

    Sun K, Gu Z C, Katsura H, Sarma S D 2011 Phys. Rev. Lett. 106 236803

    [6]

    Neupert T, Santos L, Chamon C, Mudry C 2011 Phys. Rev. Lett. 106 236804

    [7]

    Sheng D N, Gu Z C, Sun K, Sheng L 2011 Nat. Commun. 2 389

    [8]

    Li W, Liu Z, Wu Y S, Chen Y 2014 Phys. Rev. B 89 125411

    [9]

    Li W, Sheng D N, Ting C S, Chen Y 2014 Phys. Rev. B 90 081102(R)

    [10]

    Li W, Chen Y 2016 EPL 113 47001

    [11]

    Liu C R, Guo Y W, Li Z J, Li W, Chen Y 2016 Sci. Reports 6 33472

    [12]

    Dirac P A M 1982 The Principles of Quantum Mechanics (Oxford:Oxford Science Publications) p53

    [13]

    Shankar R 1994 Principles of Quantum Mechanics (New York Plenum Press) p115

    [14]

    Bardeen J, Cooper L, Schriffer J R 1957 Phys. Rev. 8 1178

    [15]

    Lanczos C 1950 J. Res. Nat. I Bur. Std. 45 255

    [16]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864

    [17]

    Singh D 1994 Planewaves, Pseudopotentials and the LAPW Method (Boston/Dordecht/London:Kluwer Academic Publishers) p43

    [18]

    Dresselhaus M S, Dresselhaus G, Jorio A 2008 Group Theory Application to the Physics of Condensed Matter (Springer) p57

    [19]

    Wang Z X, Guo D R 2012 Introduction to the Special Functions (Beijing:Peking University Press) p381 (in Chinese)[王竹溪, 郭敦仁 2012 特殊函数概论 (北京:北京大学出版社) 第381页]

    [20]

    Ma W T 2016 Computational Physics (Beijing:Science Press) p64 (in Chinese)[马文淦 2016 计算物理学 (北京:科学出版社) 第64页]

  • [1]

    Fehske H, Schneider R, Weibe A 2008 Computational Many-Particle Physics (Berlin:Springer) p529

    [2]

    Lin H Q 1990 Phys. Rev. B 42 6561

    [3]

    Regnault N, Bernevig B A 2011 Phys. Rev. X 1 021014

    [4]

    Tang E, Mei J W, Wen X G 2011 Phys. Rev. Lett. 106 236802

    [5]

    Sun K, Gu Z C, Katsura H, Sarma S D 2011 Phys. Rev. Lett. 106 236803

    [6]

    Neupert T, Santos L, Chamon C, Mudry C 2011 Phys. Rev. Lett. 106 236804

    [7]

    Sheng D N, Gu Z C, Sun K, Sheng L 2011 Nat. Commun. 2 389

    [8]

    Li W, Liu Z, Wu Y S, Chen Y 2014 Phys. Rev. B 89 125411

    [9]

    Li W, Sheng D N, Ting C S, Chen Y 2014 Phys. Rev. B 90 081102(R)

    [10]

    Li W, Chen Y 2016 EPL 113 47001

    [11]

    Liu C R, Guo Y W, Li Z J, Li W, Chen Y 2016 Sci. Reports 6 33472

    [12]

    Dirac P A M 1982 The Principles of Quantum Mechanics (Oxford:Oxford Science Publications) p53

    [13]

    Shankar R 1994 Principles of Quantum Mechanics (New York Plenum Press) p115

    [14]

    Bardeen J, Cooper L, Schriffer J R 1957 Phys. Rev. 8 1178

    [15]

    Lanczos C 1950 J. Res. Nat. I Bur. Std. 45 255

    [16]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864

    [17]

    Singh D 1994 Planewaves, Pseudopotentials and the LAPW Method (Boston/Dordecht/London:Kluwer Academic Publishers) p43

    [18]

    Dresselhaus M S, Dresselhaus G, Jorio A 2008 Group Theory Application to the Physics of Condensed Matter (Springer) p57

    [19]

    Wang Z X, Guo D R 2012 Introduction to the Special Functions (Beijing:Peking University Press) p381 (in Chinese)[王竹溪, 郭敦仁 2012 特殊函数概论 (北京:北京大学出版社) 第381页]

    [20]

    Ma W T 2016 Computational Physics (Beijing:Science Press) p64 (in Chinese)[马文淦 2016 计算物理学 (北京:科学出版社) 第64页]

  • [1] Zhao Ting, Gong Maomao, Zhang Song Bin. Theoretical study on the photo-ionization of helium atoms by Bessel vortex light. Acta Physica Sinica, 2024, 73(24): . doi: 10.7498/aps.73.20241378
    [2] Chen Xin-Miao, Li Hai-Ying, Wu Tao, Meng Xiang-Shuai, Li Feng-Xia. Near-field electromagnetic scattering of Bessel vortex beam by metal target. Acta Physica Sinica, 2023, 72(10): 100302. doi: 10.7498/aps.72.20222192
    [3] Liu Yu-Ting, He Wen-Yu, Liu Jun-Wei, Shao Qi-Ming. Berry curvature-induced emerging magnetic response in two-dimensional materials. Acta Physica Sinica, 2021, 70(12): 127303. doi: 10.7498/aps.70.20202132
    [4] Wei Xiang, Wu Zhi-Zheng, Cao Zhan, Wang Yuan-Yuan, Dziki Mbemba. Shaping self-accelerating Bessel-like optical beams along arbitrary trajectories by magnetic fluid deformable mirror. Acta Physica Sinica, 2019, 68(11): 114701. doi: 10.7498/aps.68.20190063
    [5] Yu Tao, Xia Hui, Fan Zhi-Hua, Xie Wen-Ke, Zhang Pan, Liu Jun-Sheng, Chen Xin. Generation of Bessel-Gaussian vortex beam by combining technology. Acta Physica Sinica, 2018, 67(13): 134203. doi: 10.7498/aps.67.20180325
    [6] Yue Yang-Yang, Zhang Xing-Yu, Yang Bo, Lu Rong-Er, Hong Xu-Hao, Zhang Chao, Qin Yi-Qiang, Zhu Yong-Yuan. Theoretical investigation on a kind of time-dependent Bessel beam. Acta Physica Sinica, 2016, 65(14): 144201. doi: 10.7498/aps.65.144201
    [7] Zhang Hai-Chao, Zheng Dan-Chen, Bian Mao-Song, Han Min. A fluid simulation method based on two-dimensional smoothed particle hydrodynamics. Acta Physica Sinica, 2016, 65(24): 244701. doi: 10.7498/aps.65.244701
    [8] Xiao Li, Lei Tian-Yu, Liang Yu, Zhao Min, Liu Hui, Zhang Si-Qi, Li Hong, Ma Ji, Wu Xiang-Yao. Two-dimensional function photonic crystal. Acta Physica Sinica, 2016, 65(13): 134207. doi: 10.7498/aps.65.134207
    [9] Jiao Bao-Bao. Eigenvalue problems solved by reorthogonalization Lanczos method for the large non-orthonormal sparse matrix. Acta Physica Sinica, 2016, 65(19): 192101. doi: 10.7498/aps.65.192101
    [10] Zhao Juan-Ying, Deng Dong-Mei, Zhang Ze, Liu Jing-Jiao, Jiang Dong-Sheng. Theoretical and experimental study on self-accelerating Bessel-like Hermite-Gaussian beams. Acta Physica Sinica, 2014, 63(4): 044204. doi: 10.7498/aps.63.044204
    [11] Ju Zai-Qiang, Wang Yan, Bao Yuan, Li Pan-Yun, Zhu Zhong-Zhu, Zhang Kai, Huang Wan-Xia, Yuan Qing-Xi, Zhu Pei-Ping, Wu Zi-Yu. Response function of angle signal in two-dimensional grating imaging. Acta Physica Sinica, 2014, 63(7): 078701. doi: 10.7498/aps.63.078701
    [12] Xie Chen, Hu Ming-Lie, Xu Zong-Wei, Wu Wei, Gao Hai-Feng, Zhang Da-Peng, Qin Peng, Wang Yi-Sen, Wang Qing-Yue. High power bessel ultrashort pulses directly output from a fiber laser system. Acta Physica Sinica, 2013, 62(6): 064203. doi: 10.7498/aps.62.064203
    [13] Bi Chuang, Zhang Qian, Xiang Yong, Wang Jing-Mei. Bifurcation and attractor of two-dimensional sinusoidal discrete map. Acta Physica Sinica, 2013, 62(24): 240503. doi: 10.7498/aps.62.240503
    [14] Ren Zhi-Jun, Wu Qiong, Zhou Wei-Dong, Wu Gen-Zhu, Shi Yi-Le. Spatially induced Airy-Bessel light bullets. Acta Physica Sinica, 2012, 61(17): 174207. doi: 10.7498/aps.61.174207
    [15] Dai Yu-Rong, Ding De-Sheng. Second-harmonic generation of the Bessel sound beam of several lobes. Acta Physica Sinica, 2011, 60(12): 124302. doi: 10.7498/aps.60.124302
    [16] Huang Chun-Jia, Li Jiang-Fan, He Hui-Yong. . Acta Physica Sinica, 2000, 49(4): 615-618. doi: 10.7498/aps.49.615
    [17] LIU YU-FENG, ZENG JIN-YAN. FOUR KINDS OF RAISING AND LOWERING OPERATORS-OF TWO-AND THREE-DIMENSIONAL HYDROGEN ATOMS. Acta Physica Sinica, 1997, 46(3): 428-434. doi: 10.7498/aps.46.428
    [18] ZHANG HAI-YAN, XU BO-WEI. INVESTIGATION OF ONE-DIMENSIONAL NNN INTERACTION QUANTUN CHAIN BY CONFORMAL INVA-RIANCE AND THE LANCZOS METHOD. Acta Physica Sinica, 1994, 43(6): 864-871. doi: 10.7498/aps.43.864
    [19] XIONG XIAO-MING. THE CORRELATION FUNCTION OF TWO DIMENSIONAL ELECTRON GAS. Acta Physica Sinica, 1989, 38(6): 1012-1015. doi: 10.7498/aps.38.1012
    [20] LIN WEI-GUAN. APPLICATION OF THE APPROXIMATE EVALUATION OF BESSEL FUNCTIONS TO FREQUENCY MODULATION SYSTEM. Acta Physica Sinica, 1955, 11(5): 411-420. doi: 10.7498/aps.11.411
Metrics
  • Abstract views:  6759
  • PDF Downloads:  305
  • Cited By: 0
Publishing process
  • Received Date:  06 July 2017
  • Accepted Date:  13 August 2017
  • Published Online:  05 December 2017

/

返回文章
返回