Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical study on acoustic behavior of two-dimensional granular system

Liu Xiao-Yu Zhang Guo-Hua Sun Qi-Cheng Zhao Xue-Dan Liu Shang

Citation:

Numerical study on acoustic behavior of two-dimensional granular system

Liu Xiao-Yu, Zhang Guo-Hua, Sun Qi-Cheng, Zhao Xue-Dan, Liu Shang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The transversal and longitudinal wave velocities, the acoustic attenuation coefficients, the nonlinear coefficients at different pressures and the acoustic attenuation coefficient as a function of frequency in a two-dimensional (2D) monodisperse disc system are numerically calculated. The results show that the transversal and longitudinal wave velocities both exhibit a piecewise power law with pressure P. When P -4, the velocity decreases with the increase of pressure in the 2D disc granular system, and when P > 10-4, the transversal wave velocity Vt and longitudinal wave velocity Vl show the scaling power laws, i.e., νt~P0.202 and vl~P0.338, respectively. The ratio of the shear modulus to the bulk modulus G/B shows a power law scaling with the pressure, G/B~P-0.502, implying that the system lies in an L glass state at low pressure, similar to that of a three-dimensional (3D) spherical granular system. The attenuation coefficients (αT, αL) of the horizontal excitation and vertical excitation also show the picecewise behaviors with the change of frequency f. When f f. When f > 0.05, α ∝ fTα, αL ∝ f. And when f > 0.35, αT ∝ f2 and αL ∝ f1.5. In addition, the nonlinear coefficient and the attenuation coefficient of the 2D disc granular system under the vertical and horizontal excitation both also show a piecewise law behavior with pressure, similar to that of the acoustic velocity. When P -4, only the transversal nonlinear coefficient changes according to βT ∝ P-0.230, while the other coefficient has no change. When P > 10-4, the attenuation coefficients and nonlinear coefficients decrease according to their power law with the increase of pressure, i.e., βT ∝ P-0.703, βL ∝ P-0.684, αT ∝ P-0.099, αL ∝ P-0.105. The characteristic length l*, which characterizes the disordered structure responsible for the scattering, also decreases according to power law with the increase of pressure, when P -4, l* ∝ P-0.595; when P > 10-4, l* ∝ P0.236.
      Corresponding author: Zhang Guo-Hua, zhguohua@sas.ustb.edu.cn;qcsun@tsinghua.edu.cn ; Sun Qi-Cheng, zhguohua@sas.ustb.edu.cn;qcsun@tsinghua.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11272048, 11572178, 91634202).
    [1]

    Liu A J, Nagel S R 1998 Nature 396 21

    [2]

    Henkes S, Chakraborty B 2005 Phys. Rev. Lett. 95 198002

    [3]

    O'Hern C S, Silbert L E, Nagel S R 2003 Phys. Rev. E 68 011306

    [4]

    O'Hern C, Langer S, Liu A, Nagel S 2002 Phys. Rev. Lett. 88 075507

    [5]

    Xu N 2011 Front. Phys. 6 109

    [6]

    Ikeda A, Berthier L 2015 Phys. Rev. E 92 012309

    [7]

    Wang X, Zheng W, Wang L, Xu N 2015 Phys. Rev. Lett. 114 035502

    [8]

    Coulais C, Behringer R P, Dauchot O 2014 Soft Matter 10 1519

    [9]

    Karimi K, Maloney C E 2015 Phys. Rev. E 92 022208

    [10]

    Sussman D M, Goodrich C P, Liu A J, Nagel S R 2015 Soft Matter 11 2745

    [11]

    Wyart M, Nagel S R, Witten T A 2005 Europhys. Lett. 72 486

    [12]

    Wyart M, Silbert L, Nagel S 2005 Phys. Rev. E 72 051306

    [13]

    Silbert L, Liu A, Nagel S 2005 Phys. Rev. Lett. 95 098301

    [14]

    Vitelli V 2010 Soft Matter 6 3007

    [15]

    Mizuno H, Silbert L E, Sperl M 2016 Phys. Rev. Lett. 116 068302

    [16]

    Merkel A, Tournat V, Gusev V 2014 Phys. Rev. E 90 023206

    [17]

    Zhang Q, Li Y, Hou M, Jiang Y, Liu M 2012 Phys. Rev. E 85 031306

    [18]

    Zhang Q, Li Y C, Liu R, Jiang Y M, Hou M Y 2012 Acta Phys. Sin. 61 234501 (in Chinese)[张祺, 李寅阊, 刘锐, 蒋亦民, 厚美瑛 2012 物理学报 61 234501]

    [19]

    Zheng H P 2014 Chin. Phys. B 23 054503

    [20]

    Vitelli V, Xu N, Wyart M, Liu A J, Nagel S R 2010 Phys. Rev. E 81 021301

    [21]

    Somfai E, Roux J N, Snoeijer J, van Hecke M, van Saarloos W 2005 Phys. Rev. E 72 021301

    [22]

    Jia X, Caroli C, Velicky B 1999 Phys. Rev. Lett. 82 1863

    [23]

    Zhang P, Zhao X D, Zhang G H, Zhang Q, Sun Q C, Hou Z J, Dong J J 2016 Acta Phys. Sin. 65 024501 (in Chinese)[张攀, 赵雪丹, 张国华, 张祺, 孙其诚, 侯志坚, 董军军 2016 物理学报 65 024501]

    [24]

    Lherminier S, Planet R, Simon G, Vanel L, Ramos O 2014 Phys. Rev. Lett. 113 098001

    [25]

    West B J, Shlesinger M F 1984 J. Stat. Phys. 36 779

    [26]

    Langlois V, Jia X 2015 Phys. Rev. E 91 022205

    [27]

    Hong J 2005 Phys. Rev. Lett. 94 108001

    [28]

    Wang P J, Li Y D, Xia J H, Liu C S 2008 Phys. Rev. E 77 060301

    [29]

    Wang P J, Xia J H, Li Y D, Liu C S 2007 Phys. Rev. E 76 041305

    [30]

    Brunet T, Jia X, Johnson P A 2008 Geophys. Res. Lett. 35 L19308

  • [1]

    Liu A J, Nagel S R 1998 Nature 396 21

    [2]

    Henkes S, Chakraborty B 2005 Phys. Rev. Lett. 95 198002

    [3]

    O'Hern C S, Silbert L E, Nagel S R 2003 Phys. Rev. E 68 011306

    [4]

    O'Hern C, Langer S, Liu A, Nagel S 2002 Phys. Rev. Lett. 88 075507

    [5]

    Xu N 2011 Front. Phys. 6 109

    [6]

    Ikeda A, Berthier L 2015 Phys. Rev. E 92 012309

    [7]

    Wang X, Zheng W, Wang L, Xu N 2015 Phys. Rev. Lett. 114 035502

    [8]

    Coulais C, Behringer R P, Dauchot O 2014 Soft Matter 10 1519

    [9]

    Karimi K, Maloney C E 2015 Phys. Rev. E 92 022208

    [10]

    Sussman D M, Goodrich C P, Liu A J, Nagel S R 2015 Soft Matter 11 2745

    [11]

    Wyart M, Nagel S R, Witten T A 2005 Europhys. Lett. 72 486

    [12]

    Wyart M, Silbert L, Nagel S 2005 Phys. Rev. E 72 051306

    [13]

    Silbert L, Liu A, Nagel S 2005 Phys. Rev. Lett. 95 098301

    [14]

    Vitelli V 2010 Soft Matter 6 3007

    [15]

    Mizuno H, Silbert L E, Sperl M 2016 Phys. Rev. Lett. 116 068302

    [16]

    Merkel A, Tournat V, Gusev V 2014 Phys. Rev. E 90 023206

    [17]

    Zhang Q, Li Y, Hou M, Jiang Y, Liu M 2012 Phys. Rev. E 85 031306

    [18]

    Zhang Q, Li Y C, Liu R, Jiang Y M, Hou M Y 2012 Acta Phys. Sin. 61 234501 (in Chinese)[张祺, 李寅阊, 刘锐, 蒋亦民, 厚美瑛 2012 物理学报 61 234501]

    [19]

    Zheng H P 2014 Chin. Phys. B 23 054503

    [20]

    Vitelli V, Xu N, Wyart M, Liu A J, Nagel S R 2010 Phys. Rev. E 81 021301

    [21]

    Somfai E, Roux J N, Snoeijer J, van Hecke M, van Saarloos W 2005 Phys. Rev. E 72 021301

    [22]

    Jia X, Caroli C, Velicky B 1999 Phys. Rev. Lett. 82 1863

    [23]

    Zhang P, Zhao X D, Zhang G H, Zhang Q, Sun Q C, Hou Z J, Dong J J 2016 Acta Phys. Sin. 65 024501 (in Chinese)[张攀, 赵雪丹, 张国华, 张祺, 孙其诚, 侯志坚, 董军军 2016 物理学报 65 024501]

    [24]

    Lherminier S, Planet R, Simon G, Vanel L, Ramos O 2014 Phys. Rev. Lett. 113 098001

    [25]

    West B J, Shlesinger M F 1984 J. Stat. Phys. 36 779

    [26]

    Langlois V, Jia X 2015 Phys. Rev. E 91 022205

    [27]

    Hong J 2005 Phys. Rev. Lett. 94 108001

    [28]

    Wang P J, Li Y D, Xia J H, Liu C S 2008 Phys. Rev. E 77 060301

    [29]

    Wang P J, Xia J H, Li Y D, Liu C S 2007 Phys. Rev. E 76 041305

    [30]

    Brunet T, Jia X, Johnson P A 2008 Geophys. Res. Lett. 35 L19308

  • [1] Zhao Ning-Ning, Xiao Xin-Yu, Fan Feng-Xian, Su Ming-Xu. Ultrasonic attenuation model of mixed particle three-phase system based on Monte Carlo method. Acta Physica Sinica, 2022, 71(7): 074303. doi: 10.7498/aps.71.20211869
    [2] Hou Sen, Hu Chang-Qing, Zhao Mei. Inversion method for bubble size distribution with sound attenuation. Acta Physica Sinica, 2021, 70(4): 044301. doi: 10.7498/aps.70.20201385
    [3] Luo Zhong-Bing,  Dong Hui-Jun,  Ma Zhi-Yuan,  Zou Long-Jiang,  Zhu Xiao-Lei,  Lin Li. Orientation relationship between ferrite and austenite and its influence on ultrasonic attenuation in cast austenitic stainless steel. Acta Physica Sinica, 2018, 67(23): 238102. doi: 10.7498/aps.67.20181251
    [4] Zhang Pan, Zhao Xue-Dan, Zhang Guo-Hua, Zhang Qi, Sun Qi-Cheng, Hou Zhi-Jian, Dong Jun-Jun. Acoustic detection and nonlinear response of granular materials under vertical vibrations. Acta Physica Sinica, 2016, 65(2): 024501. doi: 10.7498/aps.65.024501
    [5] Song Ping, Cai Ling-Cang, Li Xin-Zhu, Tao Tian-Jiong, Zhao Xin-Wen, Wang Xue-Jun, Fang Mao-Lin. Sound velocity and phase transition for low porosity tin at high pressure. Acta Physica Sinica, 2015, 64(10): 106401. doi: 10.7498/aps.64.106401
    [6] Yu Yu-Ying, Tan Ye, Dai Cheng-Da, Li Xue-Mei, Li Ying-Hua, Tan Hua. Sound velocities of vanadium under shock compression. Acta Physica Sinica, 2014, 63(2): 026202. doi: 10.7498/aps.63.026202
    [7] Peng Zheng, Jiang Yi-Min, Liu Rui, Hou Mei-Ying. Energy dissipation of a granular system under vertical vibration. Acta Physica Sinica, 2013, 62(2): 024502. doi: 10.7498/aps.62.024502
    [8] Wang Yong, Lin Shu-Yu, Zhang Xiao-Li. Linear wave propagation in the bubbly liquid. Acta Physica Sinica, 2013, 62(6): 064304. doi: 10.7498/aps.62.064304
    [9] Sun Jian-Ming, Yu Jie, Guo Xia-Sheng, Zhang Dong. Study of nonlinear acoustic field of high intensity focused ultrasound by the fractional wave. Acta Physica Sinica, 2013, 62(5): 054301. doi: 10.7498/aps.62.054301
    [10] Peng Ya-Jing, Zhang Zhuo, Wang Yong, Liu Xiao-Song. Experimental and theoretical investigations of the effect of “Brazil Nut” segregation in vibrating granular matters. Acta Physica Sinica, 2012, 61(13): 134501. doi: 10.7498/aps.61.134501
    [11] Ji Shun-Ying, Li Peng-Fei, Chen Xiao-Dong. Experiments on shock-absorbing capacity of granular matter under impact load. Acta Physica Sinica, 2012, 61(18): 184703. doi: 10.7498/aps.61.184703
    [12] Zhang Qi, Li Yin-Chang, Liu Rui, Jiang Yi-Min, Hou Mei-Ying. Acoustic probing of the granular solid system under direct shear. Acta Physica Sinica, 2012, 61(23): 234501. doi: 10.7498/aps.61.234501
    [13] Zheng He-Peng, Jiang Yi-Min, Peng Zheng, Fu Li-Ping. Properties of sound waves in granular matter analyzed by an elastic potential model. Acta Physica Sinica, 2012, 61(21): 214502. doi: 10.7498/aps.61.214502
    [14] Bi Zhong-Wei, Sun Qi-Cheng, Liu Jian-Guo, Jin Feng, Zhang Chu-Han. Development of shear band in a granular material in biaxial tests. Acta Physica Sinica, 2011, 60(3): 034502. doi: 10.7498/aps.60.034502
    [15] Song Ping, Wang Qing-Song, Dai Cheng-Da, Cai Ling-Cang, Zhang Yi, Weng Ji-Dong. Sound velocity and shock melting of low porosity aluminum. Acta Physica Sinica, 2011, 60(4): 046201. doi: 10.7498/aps.60.046201
    [16] Jiang Ze-Hui, Jing Ya-Fang, Zhao Hai-Fa, Zheng Rui-Hua. Effects of subharmonic motion on size segregation in vertically vibrated granular materials. Acta Physica Sinica, 2009, 58(9): 5923-5929. doi: 10.7498/aps.58.5923
    [17] Lu Yi-Gang, Peng Jian-Xin. Study of acoustical properties of supercritical carbon dioxide using liquid acoustical theory. Acta Physica Sinica, 2008, 57(2): 1030-1036. doi: 10.7498/aps.57.1030
    [18] Zheng He-Peng, Jiang Yi-Min. A nonlinear elastic analysis of static stress and lateral pressure coefficient for granular Couette systems. Acta Physica Sinica, 2008, 57(12): 7919-7927. doi: 10.7498/aps.57.7919
    [19] Zhang Hang, Guo Yun-Bo, Chen Xiao, Wang Duan, Cheng Peng-Jun. The distribution of a granular pile under impact. Acta Physica Sinica, 2007, 56(4): 2030-2036. doi: 10.7498/aps.56.2030
    [20] Du Xue-Neng, Hu Lin, Kong Wei-Shu, Wang Wei-Ming, Wu Yu. On the nonlinear oscillation of internal sliding friction in particulate matter. Acta Physica Sinica, 2006, 55(12): 6488-6493. doi: 10.7498/aps.55.6488
Metrics
  • Abstract views:  5688
  • PDF Downloads:  130
  • Cited By: 0
Publishing process
  • Received Date:  15 May 2017
  • Accepted Date:  17 July 2017
  • Published Online:  05 December 2017

/

返回文章
返回