Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical study on conical two-dimensional photonic crystal in silicon thin-film solar cells

Chen Pei-Zhuan Yu Li-Yuan Niu Ping-Juan Fu Xian-Song Yang Guang-Hua Zhang Jian-Jun Hou Guo-Fu

Citation:

Numerical study on conical two-dimensional photonic crystal in silicon thin-film solar cells

Chen Pei-Zhuan, Yu Li-Yuan, Niu Ping-Juan, Fu Xian-Song, Yang Guang-Hua, Zhang Jian-Jun, Hou Guo-Fu
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • To further improve the absorption of thin-film silicon solar cells (TFSSCs), it is essential to understand what kind of texture morphology could present the best light trapping effect, or rather, which structural parameter plays the most important role, and offers the required lateral feature size, height or others. In this paper, the influences of structural parameters of conical two-dimensional photonic crystal (2D PC) on each-layer absorption of the microcrystalline silicon thin film solar cells are numerically studied by using the finite-difference time-domain method when 2D PC is introduced into the intrinsic layer. The results show that both the intrinsic absorption and parasitic absorption are significantly enhanced via introduction of 2D PC into the intrinsic layer. The parasitic absorption is mainly caused by the ITO layer, and the intrinsic absorption shows a sinusoidal fluctuation with the increase of period. It is found that the aspect ratio (height/period) of the 2D PC has a decisive influence on the cell intrinsic absorption. When the period of the 2D PC is less than 1m, the intrinsic absorption first increases and then decreases with the increase of the aspect ratio, and reaches a maximum value with an aspect ratio of 1. For the case of period larger than 1m, the aspect ratio needed to obtain the maximum result is smaller than 1. What is more, the larger the period, the smaller the aspect ratio for maximizing the intrinsic absorption will be. The peak intrinsic absorption can be obtained when a 2D PC with a period of 0.5m and an aspect ratio of 1 is introduced. Compared with that of the flat cell, the short-circuited current density of the above optimized 2D PC cell can be significantly enhanced by 5.8 mA/cm2(from 21.9 to 27.8 mA/cm2), corresponding to a relative enhancement of 27%. In order to improve antireflection performance, it is critical to adopt a textured front-surface morphology where the aspect ratio is higher than 1/2. In addition, the intrinsic absorption increases with the increasing fill factor, and reaches a maximum value when the fill factor of the 2D PC is close to 0.9. The research results of this paper break through the traditional viewpoint of light trapping mechanism which points out that the light trapping effect is mainly dependent on the lateral feature size of the texture, and provide an important guide for obtaining optimized random or periodic texture via experiment.
      Corresponding author: Yu Li-Yuan, Yuliyuan@tjpu.edu.cn;Pjniu@outlook.com ; Niu Ping-Juan, Yuliyuan@tjpu.edu.cn;Pjniu@outlook.com
    • Funds: Project supported by the Program of Introducing Talents of Discipline to Universities, China (Grant No. B16027), the National Natural Science Foundation of China (Grant Nos. 61176060, 61404074, 61504069, 61377031, 61605145), the Natural Science Foundation of Tianjin, China (Grant No. 14JCQNJC02100), and the Open Fund of the Key Laboratory of Optical Information Science Technology (Nankai University), Ministry of Education, China (Grant No. 2017KFKT015).
    [1]

    Shah A V, Schade H, Vanecek M, Meier J, Vallat-Sauvain E, Wyrsch N, Kroll U, Droz C, Bailat J 2004 Prog. Photovoltaics 12 113

    [2]

    Moulin E, Bittkau K, Ghosh M, Bugnon G, Stuckelberger M, Meier M, Haug F J, Hupkes J, Ballif C 2016 Sol. Energ. Mat. Sol. C 145 185

    [3]

    Muller J, Rech B, Springer J, Vanecek M 2004 Sol. Energy 77 917

    [4]

    Andreani L C, Bozzola A, Kowalczewski P, Liscidini M 2015 Sol. Energ. Mat. Sol. C 135 78

    [5]

    Isabella O 2013 Ph. D. Dissertation (Delft: Delft University of Technology)

    [6]

    Hsu C M, Battaglia C, Pahud C, Ruan Z C, Haug F J, Fan S H, Ballif C, Cui Y 2012 Adv. Energy. Mater. 2 628

    [7]

    Tan H, Santbergen R, Smets A H M, Zeman M 2012 Nano Lett. 12 4070

    [8]

    Chen P Z, Hou G F, Fan Q H, Ni J, Zhang J J, Huang Q, Zhang X D, Zhao Y 2015 Sol. Energ. Mat. Sol. C 143 435

    [9]

    Yan B, Yue G, Sivec L, Owens-Mawson J, Yang J, Guha S 2012 Sol. Energ. Mat. Sol. C 104 13

    [10]

    Yan B, Yue G, Sivec L, Yang J, Guha S 2011 Appl. Phys. Lett. 99 113512

    [11]

    Sai H, Matsui T, Matsubara K, Kondo M, Yoshida I 2014 IEEE J. Photovolt. 4 1349

    [12]

    Sai H, Matsui T, Saito K, Kondo M, Yoshida I 2015 Prog. Photovoltaics 23 1572

    [13]

    Lin Y Y, Xu Z, Yu D L, Lu L F, Yin M, Tavakoli M M, Chen X Y, Hao Y Y, Fan Z Y, Cui Y X 2016 ACS Appl. Mater. Interfaces 8 10929

    [14]

    Tanaka Y, Ishizaki K, Zoysa M D, Umeda T, Kawamoto Y, Fujita S, Noda S 2015 Prog. Photovoltaics 23 1475

    [15]

    Ishizaki K, de Zoysa M, Tanaka Y, Umeda T, Kawamoto Y, Noda S 2015 Opt. Express 23 1040

    [16]

    Wang Y, Zhang X, Bai L, Huang Q, Wei C, Zhao Y 2012 Appl. Phys. Lett. 100 263508

    [17]

    Tan H R, Psomadaki E, Isabella O, Fischer M, Babal P, Vasudevan R, Zeman M, Smets A H M 2013 Appl. Phys. Lett. 103 173905

    [18]

    Tan H, Moulin E, Si F T, Schuttauf J W, Stuckelberger M, Isabella O, Haug F J, Ballif C, Zeman M, Smets A H M 2015 Prog. Photovoltaics 23 949

    [19]

    Sai H, Saito K, Kondo M 2013 IEEE J. Photovolt. 3 5

    [20]

    Moulin E, Steltenpool M, Boccard M, Garcia L, Bugnon G, Stuckelberger M, Feuser E, Niesen B, van Erven R, Schuttauf J W 2014 IEEE J. Photovolt. 4 1177

    [21]

    Dewan R, Shrestha S, Jovanov V, Hupkes J, Bittkau K, Knipp D 2015 Sol. Energ. Mat. Sol. C 143 183

    [22]

    Soh H J, Yoo J, Kim D 2012 Sol. Energy 86 2095

    [23]

    Kawamoto Y, Tanaka Y, Ishizaki K, de Zoysa M, Asano T, Noda S 2015 Opt. Express 23 896

    [24]

    Kawamoto Y, Tanaka Y, Ishizaki K, de Zoysa M, Asano T, Noda S 2014 IEEE J. Photovolt. 6 4700110

    [25]

    Gomard G, Peretti R, Callard S, Meng X, Artinyan R, Deschamps T, Roca I, Cabarrocas P, Drouard E, Seassal C 2014 Appl. Phys. Lett. 104 051119

    [26]

    Tamang A, Sai H, Jovanov V, Hossain M I, Matsubara K, Knipp D 2016 Prog. Photovoltaics 24 379

    [27]

    Shi Y, Wang X, Liu W, Yang T, Ma J, Yang F 2014 Opt. Express 22 20473

    [28]

    Fisker C, Pedersen T G 2013 Opt. Express 21 208

    [29]

    Chen P Z, Hou G F, Zhang J J, Zhang X D, Zhao Y 2014 J. Appl. Phys. 116 064508

    [30]

    Curtin B, Biswas R, Dalal V 2009 Appl. Phys. Lett. 95 231102

  • [1]

    Shah A V, Schade H, Vanecek M, Meier J, Vallat-Sauvain E, Wyrsch N, Kroll U, Droz C, Bailat J 2004 Prog. Photovoltaics 12 113

    [2]

    Moulin E, Bittkau K, Ghosh M, Bugnon G, Stuckelberger M, Meier M, Haug F J, Hupkes J, Ballif C 2016 Sol. Energ. Mat. Sol. C 145 185

    [3]

    Muller J, Rech B, Springer J, Vanecek M 2004 Sol. Energy 77 917

    [4]

    Andreani L C, Bozzola A, Kowalczewski P, Liscidini M 2015 Sol. Energ. Mat. Sol. C 135 78

    [5]

    Isabella O 2013 Ph. D. Dissertation (Delft: Delft University of Technology)

    [6]

    Hsu C M, Battaglia C, Pahud C, Ruan Z C, Haug F J, Fan S H, Ballif C, Cui Y 2012 Adv. Energy. Mater. 2 628

    [7]

    Tan H, Santbergen R, Smets A H M, Zeman M 2012 Nano Lett. 12 4070

    [8]

    Chen P Z, Hou G F, Fan Q H, Ni J, Zhang J J, Huang Q, Zhang X D, Zhao Y 2015 Sol. Energ. Mat. Sol. C 143 435

    [9]

    Yan B, Yue G, Sivec L, Owens-Mawson J, Yang J, Guha S 2012 Sol. Energ. Mat. Sol. C 104 13

    [10]

    Yan B, Yue G, Sivec L, Yang J, Guha S 2011 Appl. Phys. Lett. 99 113512

    [11]

    Sai H, Matsui T, Matsubara K, Kondo M, Yoshida I 2014 IEEE J. Photovolt. 4 1349

    [12]

    Sai H, Matsui T, Saito K, Kondo M, Yoshida I 2015 Prog. Photovoltaics 23 1572

    [13]

    Lin Y Y, Xu Z, Yu D L, Lu L F, Yin M, Tavakoli M M, Chen X Y, Hao Y Y, Fan Z Y, Cui Y X 2016 ACS Appl. Mater. Interfaces 8 10929

    [14]

    Tanaka Y, Ishizaki K, Zoysa M D, Umeda T, Kawamoto Y, Fujita S, Noda S 2015 Prog. Photovoltaics 23 1475

    [15]

    Ishizaki K, de Zoysa M, Tanaka Y, Umeda T, Kawamoto Y, Noda S 2015 Opt. Express 23 1040

    [16]

    Wang Y, Zhang X, Bai L, Huang Q, Wei C, Zhao Y 2012 Appl. Phys. Lett. 100 263508

    [17]

    Tan H R, Psomadaki E, Isabella O, Fischer M, Babal P, Vasudevan R, Zeman M, Smets A H M 2013 Appl. Phys. Lett. 103 173905

    [18]

    Tan H, Moulin E, Si F T, Schuttauf J W, Stuckelberger M, Isabella O, Haug F J, Ballif C, Zeman M, Smets A H M 2015 Prog. Photovoltaics 23 949

    [19]

    Sai H, Saito K, Kondo M 2013 IEEE J. Photovolt. 3 5

    [20]

    Moulin E, Steltenpool M, Boccard M, Garcia L, Bugnon G, Stuckelberger M, Feuser E, Niesen B, van Erven R, Schuttauf J W 2014 IEEE J. Photovolt. 4 1177

    [21]

    Dewan R, Shrestha S, Jovanov V, Hupkes J, Bittkau K, Knipp D 2015 Sol. Energ. Mat. Sol. C 143 183

    [22]

    Soh H J, Yoo J, Kim D 2012 Sol. Energy 86 2095

    [23]

    Kawamoto Y, Tanaka Y, Ishizaki K, de Zoysa M, Asano T, Noda S 2015 Opt. Express 23 896

    [24]

    Kawamoto Y, Tanaka Y, Ishizaki K, de Zoysa M, Asano T, Noda S 2014 IEEE J. Photovolt. 6 4700110

    [25]

    Gomard G, Peretti R, Callard S, Meng X, Artinyan R, Deschamps T, Roca I, Cabarrocas P, Drouard E, Seassal C 2014 Appl. Phys. Lett. 104 051119

    [26]

    Tamang A, Sai H, Jovanov V, Hossain M I, Matsubara K, Knipp D 2016 Prog. Photovoltaics 24 379

    [27]

    Shi Y, Wang X, Liu W, Yang T, Ma J, Yang F 2014 Opt. Express 22 20473

    [28]

    Fisker C, Pedersen T G 2013 Opt. Express 21 208

    [29]

    Chen P Z, Hou G F, Zhang J J, Zhang X D, Zhao Y 2014 J. Appl. Phys. 116 064508

    [30]

    Curtin B, Biswas R, Dalal V 2009 Appl. Phys. Lett. 95 231102

  • [1] Wang Shi-Dong, Yan Ya-Ting, Wang Rui-Ying, Zhu Zhi-Li, Gu Jin-Hua. Cesium doping for improving performance of inverse-graded 2D (CMA)2MA8Pb9I28 perovskite film and solar cells. Acta Physica Sinica, 2023, 72(13): 138801. doi: 10.7498/aps.72.20230357
    [2] Gong Bu-Qing, Chen Xiao-Yu, Wang Wei-Peng, Wang Zhi-Ye, Zhou Hua, Shen Xiang-Qian. Ag@SiO2 coupled structure’s design and regulation and control of response to thin film solar cells. Acta Physica Sinica, 2020, 69(18): 188801. doi: 10.7498/aps.69.20200334
    [3] Geng Chao, Zheng Yi, Zhang Yong-Zhe, Yan Hui. Optical design of nanowire array on silicon thin film solar cell. Acta Physica Sinica, 2016, 65(7): 070201. doi: 10.7498/aps.65.070201
    [4] Chen Yuan-Yuan, Yang Pan-Jie, Zhang Wei-Zhi, Yan Xiao-Na. A powerful method to analyze of photonic crystals: mixed variational method. Acta Physica Sinica, 2016, 65(12): 124206. doi: 10.7498/aps.65.124206
    [5] Cao Yu, Xue Lei, Zhou Jing, Wang Yi-Jun, Ni Jian, Zhang Jian-Jun. Developments of c-Si1-xGex:H thin films as near-infrared absorber for thin film silicon solar cells. Acta Physica Sinica, 2016, 65(14): 146801. doi: 10.7498/aps.65.146801
    [6] Ding Dong, Yang Shi-E, Chen Yong-Sheng, Gao Xiao-Yong, Gu Jin-Hua, Lu Jing-Xiao. Numerical simulation of light absorption enhancement in microcrystalline silicon solar cells with Al nanoparticle arrays. Acta Physica Sinica, 2015, 64(24): 248801. doi: 10.7498/aps.64.248801
    [7] Chen Pei-Zhuan, Hou Guo-Fu, Suo Song, Ni Jian, Zhang Jian-Jun, Zhang Xiao-Dan, Zhao Ying. One-dimensional photonic crystal(1D PC)-based back reflectors for amorphous silicon thin film solar cell. Acta Physica Sinica, 2014, 63(7): 077301. doi: 10.7498/aps.63.077301
    [8] Jia Xiao-Jie, Ai Bin, Xu Xin-Xiang, Yang Jiang-Hai, Deng You-Jun, Shen Hui. Two-dimensional device simulation and performance optimization of crystalline silicon selective-emitter solar cell. Acta Physica Sinica, 2014, 63(6): 068801. doi: 10.7498/aps.63.068801
    [9] Chen Pei-Zhuan, Hou Guo-Fu, Suo Song, Ni Jian, Zhang Jian-Jun, Zhang Xiao-Dan, Zhao Ying. Simulation, design and fabrication of one-dimensional photonic crystal back reflector for silicon thin film solar cell. Acta Physica Sinica, 2014, 63(12): 128801. doi: 10.7498/aps.63.128801
    [10] Zheng Xue, Yu Xue-Gong, Yang De-Ren. Passivation property of -Si:H/SiNx stack-layer film in crystalline silicon solar cells. Acta Physica Sinica, 2013, 62(19): 198801. doi: 10.7498/aps.62.198801
    [11] Jia Yu-Kun, Yang Shi-E, Guo Qiao-Neng, Chen Yong-Sheng, Gao Xiao-Yong, Gu Jin-Hua, Lu Jing-Xiao. Optimal design of light trapping structure for broadband absorption enhancement in amorphous silicon solar cell. Acta Physica Sinica, 2013, 62(24): 247801. doi: 10.7498/aps.62.247801
    [12] Yu Xiao-Ming, Zhao Jing, Hou Guo-Fu, Zhang Jian-Jun, Zhang Xiao-Dan, Zhao Ying. Investigation of light trapping structure and performance in PIN-type and NIP-type thin film silicon solar cells. Acta Physica Sinica, 2013, 62(12): 120101. doi: 10.7498/aps.62.120101
    [13] Song Yang, Gao Zhi-Hua, Li Tao, Yang Hai-Feng, Zhou Chun-Lan, Liu Zhen-Gang, Wang Wen-Jing, Duan Ye, Li You-Zhong. Theoretical analysis and experimental study of optical loss of metal contacts of crystalline silicon solar cells. Acta Physica Sinica, 2011, 60(9): 098801. doi: 10.7498/aps.60.098801
    [14] Zheng Xin-Xia, Zhang Xiao-Dan, Yang Su-Su, Wang Guang-Hong, Xu Sheng-Zhi, Wei Chang-Chun, Sun Jian, Geng Xin-Hua, Xiong Shao-Zhen, Zhao Ying. a-Si ∶H/a-Si ∶H/μc-Si ∶H triple junction solar cells. Acta Physica Sinica, 2011, 60(6): 068801. doi: 10.7498/aps.60.068801
    [15] Zhang Jian-Xin, Qu Dao-Kuan, Feng Shuai, Wang Yi-Quan, Wang Chuan-Kui. Effect of rotating cavities on the group velocities of the coupled-resonater optical waveguides. Acta Physica Sinica, 2009, 58(12): 8339-8344. doi: 10.7498/aps.58.8339
    [16] Cheng Xu-Pan, Cao Quan-Xi. Study of complete bandgap of two-dimensional columnar photonic crystals. Acta Physica Sinica, 2008, 57(5): 3249-3253. doi: 10.7498/aps.57.3249
    [17] Zhao Ming-Ming, Lü Yan-Wu, Yu Jia-Xin, Pang Xu-Qian. Effect of rotation on photonic band gap of two-dimensional square lattice photonic crystal with hollow rod. Acta Physica Sinica, 2008, 57(2): 1061-1065. doi: 10.7498/aps.57.1061
    [18] Gong Chun-Juan, Hu Xiong-Wei. Design of triangular lattice photonic crystals using genetic algorithms. Acta Physica Sinica, 2007, 56(2): 927-932. doi: 10.7498/aps.56.927
    [19] Wang Jing-Li, Chen He-Ming. Study of complete photonic band gap in two-dimensional chessboard of non-Bravais lattice. Acta Physica Sinica, 2007, 56(2): 922-926. doi: 10.7498/aps.56.922
    [20] Tian Jie, Han Shou-Zhen, Cheng Bing-Ying, Li Zhi-Yuan, Feng Shuai, Zhang Dao-Zhong, Jin Ai-Zi. Two-dimensional silicon-based photonic crystal slab with partial air-bridge. Acta Physica Sinica, 2005, 54(3): 1218-1221. doi: 10.7498/aps.54.1218
Metrics
  • Abstract views:  5611
  • PDF Downloads:  201
  • Cited By: 0
Publishing process
  • Received Date:  24 July 2017
  • Accepted Date:  03 October 2017
  • Published Online:  20 January 2019

/

返回文章
返回