Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical study on the structure and stability of neutral and cationic butanone clusters

Yang Xue Ding Da-Jun Hu Zhan Zhao Guo-Ming

Citation:

Theoretical study on the structure and stability of neutral and cationic butanone clusters

Yang Xue, Ding Da-Jun, Hu Zhan, Zhao Guo-Ming
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The molecular clusters have attracted increasing attention in recent years due to their applications in areas of laser, synchrotron radiation, molecular beam and time-of-flight mass spectrometry. The cluster structures can be speculated by the mass spectrum measurement and predicted by the quantum chemical methods. It is very important for understanding the solvation kinetics and nucleation to explore the formation and growth of clusters. Meanwhile, it is also beneficial to understanding the atomic or intermolecular interactions in the clusters. The molecular clusters have been studied in our previous work. The acetone clusters (CH3COCH3)n (n 12) were observed by 355 nm pumping laser. The structures of (CH3COCH3)n with n=2-7 were calculated by density functional theory, and some structures of clusters with low energy were given. Subsequently, several butanone cluster fragment ions and protonated butanone (CH3COC2H5, which is formed by taking a methyl change into ethyl from acetone CH3COCH3) clusters were observed by measuring the mass spectra under the irradiations of 355 nm and 118 nm laser lights, respectively. It is important to determine the stable cluster structures and explain the dynamics of the clusters by theoretical calculation. The stable geometric structures of neutral and cationic butanone clusters are optimized at B3LYP/6-31G* and B3LYP/6-311+G** levels based on the density functional theory. The structural characteristics and stabilities of butanone clusters with various sizes are also analyzed. The average binding energy, first-order difference energy, HOMO-LUMO gap and ionized energy are further discussed systematically in the present work. The results show that the structures of (CH3COC2H5)n and (CH3COC2H5)n+ have similar characteristics, single-ring structure is the most stable for them when n=3-7, and the structures also occur in some hydrogen bonded clusters, such as (H2O)n (n=3-6), (NH3)n (n=3-6), (CH3OH)n (n=3-6), and (HCHO)n (n=3-8). Moreover, the stability of double ring structure rises with cluster size increasing. The (CH3COC2H5)3 has the best stability in neutral clusters (CH3COC2H5)n with n=2-7, and it corresponds to the strongest peak in experiment. In addition, the (CH3COC2H5)4+ is the most stable in the cationic clusters with corresponding sizes. Furthermore, the vertical ionization energy of butanone molecule is 9.535 eV via theoretical calculation, which is in agreement with the experimental data. At the same time, the structures of (CH3COC2H5)2+ and (CH3COC2H5)2 are proved to be different by the ionization energy. The results provide a theoretical basis for the formation mechanism of butanone cluster fragment ions in experiment, and it is beneficial to the further study of growing the ketone clusters.
      Corresponding author: Yang Xue, yangxue11791539@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11447194) and the 13th Five-Year Science and Technology Program of the Education Department of Jilin Province, China (Grant No. JJKH20170215KJ).
    [1]

    Liu D D, Zhang H 2010 Chin. Phys. Lett. 27 93601

    [2]

    Zhang C Y, Liu X M 2015 Acta Phys. Sin. 64 163601 (in Chinese) [张春艳, 刘显明 2015 物理学报 64 163601]

    [3]

    Etienne G, Daniel G, Gabriele S, Ewald J, Peter L, Gerard M, Daniel M N, Knut R A 2008 Phys. Chem. Chem. Phys. 10 1502

    [4]

    Wang X B, Kowalski K, Wang L S, Xantheas S S 2010 J. Chem. Phys. 132 124306

    [5]

    Wei S, Purnell J, Buzza S A, Stanley R J, Castleman A W 1992 J. Chem. Phys. 97 9480

    [6]

    Purnell J, Wei S, Buzza S A, Castleman Jr A W 1993 J. Phys. Chem. 97 12530

    [7]

    Zhang S D, Zhu X J, Wang Y, Kong X H 2007 Acta Phys. Chim. Sin. 23 379 (in Chinese) [张树东, 朱湘君, 王艳, 孔祥和 2007 物理化学学报 23 379]

    [8]

    Xantheas S S, Dunning Jr T H 1993 J. Chem. Phys. 99 8774

    [9]

    Maheshwary S, Patel N, Sathyamurthy N, Kulkarni A D, Gadre S R 2001 J. Phys. Chem. A 105 10525

    [10]

    Gadre S R, Yeole S D, Sahu N 2014 Chem. Rev. 114 12132

    [11]

    Bačić Z, Miller R E 1996 J. Phys. Chem. 100 12945

    [12]

    Janeiro-Barral P E, Mella M, Curotto E 2008 J. Phys. Chem. A 112 2888

    [13]

    Buck U 1994 J. Phys. Chem. 98 5190

    [14]

    Cabaleiro-Lago E M, Ros M A 2000 J. Chem. Phys. 112 2155

    [15]

    Jin R, Chen X H 2012 Acta Phys. Sin. 61 093103 (in Chinese) [金蓉, 谌晓洪 2012 物理学报 61 093103]

    [16]

    Xu X S, Hu Z, Jin M X, Liu H, Ding D J 2002 Nucl. Phys. Rev. 19 227

    [17]

    Hu Z, Jin M X, Xu X S, Liu H, Ding D J 2003 Chem. J. Chin. Univ. 24 112 (in Chinese) [胡湛, 金明星, 许雪松, 刘航, 丁大军 2003 高等学校化学学报 24 112]

    [18]

    Hu Z, Jin M X, Xu X S, Ding D J 2006 Front. Phys. China 1 275

    [19]

    Sun C K, Hu Z, Yang X, Jin M X, Hu W C, Ding D J 2011 Chem. Res. Chin. Univ. 27 508

    [20]

    Yang X 2013 Ph. D. Dissertation (Changchun: Jilin University) (in Chinese) [杨雪 2013 博士学位论文 (长春: 吉林大学)]

    [21]

    Li Y, Hu Y J, Lu R C, Wang X Y 2000 Acta Phys. Chim. Sin. 16 810 (in Chinese) [李月, 胡勇军, 吕日昌, 王秀岩 2000 物理化学学报 16 810]

    [22]

    Wang R, Kong X H, Zhang S D 2006 Spectrum Lab. 23 417 (in Chinese) [王仍, 孔祥和, 张树东 2006 光谱实验室 23 417]

    [23]

    Becke A D 1993 J. Chem. Phys. 98 5648

    [24]

    Lee C, Yang W, Parr R G 1988 Phys. Rev. B 37 785

    [25]

    Shimanouchi T 1972 J. Phys. Chem. Ref. Data 1 189

    [26]

    Mouvier G, Hernandez R 1975 Org. Mass Spectrom. 10 958

    [27]

    Frisch M J, Trucks G W, Schlegel H B, et al. 2004 Gaussian 03, Revision D.01 (Pittsburgh, PA: Gaussian Inc.)

    [28]

    Guan J W, Hu Y J, Xie M, Bernstein E R 2012 Chem. Phys. 405 117

    [29]

    Liu K, Brown M G, Saykally R J 1997 J. Phys. Chem. A 101 8995

    [30]

    Kryachko E S 1999 Chem. Phys. Lett. 314 353

    [31]

    Chiranjib M, Kulshreshtha S K 2006 Phys. Rev. B 73 155427

    [32]

    Albrecht L, Boyd R J 2015 Comput. Theor. Chem. 1053 328

    [33]

    Li X B, Wang H Y, Yang X D, Zhu Z H 2007 J. Chem. Phys. 126 084505

  • [1]

    Liu D D, Zhang H 2010 Chin. Phys. Lett. 27 93601

    [2]

    Zhang C Y, Liu X M 2015 Acta Phys. Sin. 64 163601 (in Chinese) [张春艳, 刘显明 2015 物理学报 64 163601]

    [3]

    Etienne G, Daniel G, Gabriele S, Ewald J, Peter L, Gerard M, Daniel M N, Knut R A 2008 Phys. Chem. Chem. Phys. 10 1502

    [4]

    Wang X B, Kowalski K, Wang L S, Xantheas S S 2010 J. Chem. Phys. 132 124306

    [5]

    Wei S, Purnell J, Buzza S A, Stanley R J, Castleman A W 1992 J. Chem. Phys. 97 9480

    [6]

    Purnell J, Wei S, Buzza S A, Castleman Jr A W 1993 J. Phys. Chem. 97 12530

    [7]

    Zhang S D, Zhu X J, Wang Y, Kong X H 2007 Acta Phys. Chim. Sin. 23 379 (in Chinese) [张树东, 朱湘君, 王艳, 孔祥和 2007 物理化学学报 23 379]

    [8]

    Xantheas S S, Dunning Jr T H 1993 J. Chem. Phys. 99 8774

    [9]

    Maheshwary S, Patel N, Sathyamurthy N, Kulkarni A D, Gadre S R 2001 J. Phys. Chem. A 105 10525

    [10]

    Gadre S R, Yeole S D, Sahu N 2014 Chem. Rev. 114 12132

    [11]

    Bačić Z, Miller R E 1996 J. Phys. Chem. 100 12945

    [12]

    Janeiro-Barral P E, Mella M, Curotto E 2008 J. Phys. Chem. A 112 2888

    [13]

    Buck U 1994 J. Phys. Chem. 98 5190

    [14]

    Cabaleiro-Lago E M, Ros M A 2000 J. Chem. Phys. 112 2155

    [15]

    Jin R, Chen X H 2012 Acta Phys. Sin. 61 093103 (in Chinese) [金蓉, 谌晓洪 2012 物理学报 61 093103]

    [16]

    Xu X S, Hu Z, Jin M X, Liu H, Ding D J 2002 Nucl. Phys. Rev. 19 227

    [17]

    Hu Z, Jin M X, Xu X S, Liu H, Ding D J 2003 Chem. J. Chin. Univ. 24 112 (in Chinese) [胡湛, 金明星, 许雪松, 刘航, 丁大军 2003 高等学校化学学报 24 112]

    [18]

    Hu Z, Jin M X, Xu X S, Ding D J 2006 Front. Phys. China 1 275

    [19]

    Sun C K, Hu Z, Yang X, Jin M X, Hu W C, Ding D J 2011 Chem. Res. Chin. Univ. 27 508

    [20]

    Yang X 2013 Ph. D. Dissertation (Changchun: Jilin University) (in Chinese) [杨雪 2013 博士学位论文 (长春: 吉林大学)]

    [21]

    Li Y, Hu Y J, Lu R C, Wang X Y 2000 Acta Phys. Chim. Sin. 16 810 (in Chinese) [李月, 胡勇军, 吕日昌, 王秀岩 2000 物理化学学报 16 810]

    [22]

    Wang R, Kong X H, Zhang S D 2006 Spectrum Lab. 23 417 (in Chinese) [王仍, 孔祥和, 张树东 2006 光谱实验室 23 417]

    [23]

    Becke A D 1993 J. Chem. Phys. 98 5648

    [24]

    Lee C, Yang W, Parr R G 1988 Phys. Rev. B 37 785

    [25]

    Shimanouchi T 1972 J. Phys. Chem. Ref. Data 1 189

    [26]

    Mouvier G, Hernandez R 1975 Org. Mass Spectrom. 10 958

    [27]

    Frisch M J, Trucks G W, Schlegel H B, et al. 2004 Gaussian 03, Revision D.01 (Pittsburgh, PA: Gaussian Inc.)

    [28]

    Guan J W, Hu Y J, Xie M, Bernstein E R 2012 Chem. Phys. 405 117

    [29]

    Liu K, Brown M G, Saykally R J 1997 J. Phys. Chem. A 101 8995

    [30]

    Kryachko E S 1999 Chem. Phys. Lett. 314 353

    [31]

    Chiranjib M, Kulshreshtha S K 2006 Phys. Rev. B 73 155427

    [32]

    Albrecht L, Boyd R J 2015 Comput. Theor. Chem. 1053 328

    [33]

    Li X B, Wang H Y, Yang X D, Zhu Z H 2007 J. Chem. Phys. 126 084505

  • [1] Liu Rui, Huang Chen-Yang, Wu Yao-Rong, Hu Jing, Mo Run-Yang, Wang Cheng-Hui. Structural stability analysis of spherical bubble clusters in acoustic cavitation fields. Acta Physica Sinica, 2024, 73(8): 084303. doi: 10.7498/aps.73.20232008
    [2] Luo Qiang, Yang Heng, Guo Ping, Zhao Jian-Fei. Density functional theory calculation of structure and electronic properties in N-methane hydrate. Acta Physica Sinica, 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [3] Zhang Chen-Jun, Wang Yang-Li, Chen Chao-Kang. Density functional theory of InCn+(n=110) clusters. Acta Physica Sinica, 2018, 67(11): 113101. doi: 10.7498/aps.67.20172662
    [4] Wang Zhuan-Yu, Kang Wei-Li, Jia Jian-Feng, Wu Hai-Shun. Structure and stability of Ti2Bn (n=1-10) clusters: an ab initio investigation. Acta Physica Sinica, 2014, 63(23): 233102. doi: 10.7498/aps.63.233102
    [5] Wen Jun-Qing, Zhang Jian-Min, Yao Pan, Zhou Hong, Wang Jun-Fei. A density functional theory study of small bimetallic PdnAl (n =18) clusters. Acta Physica Sinica, 2014, 63(11): 113101. doi: 10.7498/aps.63.113101
    [6] Wen Jun-Qing, Xia Tao, Wang Jun-Fei. A density functional theory study of small bimetallic PtnAl (n=18) clusters. Acta Physica Sinica, 2014, 63(2): 023103. doi: 10.7498/aps.63.023103
    [7] Lü Jin, Yang Li-Jun, Wang Yan-Fang, Ma Wen-Jin. Density functional theory study of structure characteristics and stabilities of Al2Sn(n=2-10) clusters. Acta Physica Sinica, 2014, 63(16): 163601. doi: 10.7498/aps.63.163601
    [8] Chen Xuan, Yuan Yong-Bo, Deng Kai-Ming, Xiao Chuan-Yun, Lu Rui-Feng, Kan Er-Jun. Density functional study on the geometric property of MnxSny(x=2,3,4; y=18,24,30). Acta Physica Sinica, 2012, 61(8): 083601. doi: 10.7498/aps.61.083601
    [9] Song Jian, Li Feng, Deng Kai-Ming, Xiao Chuan-Yun, Kan Er-Jun, Lu Rui-Feng, Wu Hai-Ping. Density functional study on the stability and electronic structure of single layer Si6H4Ph2. Acta Physica Sinica, 2012, 61(24): 246801. doi: 10.7498/aps.61.246801
    [10] Jin Rong, Chen Xiao-Hong. Structures and stabilities of VOxH2O (x= 15) clusters. Acta Physica Sinica, 2012, 61(9): 093103. doi: 10.7498/aps.61.093103
    [11] Zhang Zhi-Long, Chen Yu-Hong, Ren Bao-Xing, Zhang Cai-Rong, Du Rui, Wang Wei-Chao. Density functional theory study on the structure and properties of (HMgN3)n(n=15) clusters. Acta Physica Sinica, 2011, 60(12): 123601. doi: 10.7498/aps.60.123601
    [12] Tang Hui-Shuai, Zhang Xiu-Rong, Kang Zhang-Li, Wu Li-Qing. Theoretical study of geometry structures and stability of OsnN0,±(n=1—6) clusters. Acta Physica Sinica, 2011, 60(5): 053601. doi: 10.7498/aps.60.053601
    [13] Sun Jian-Min, Zhao Gao-Feng, Wang Xian-Wei, Yang Wen, Liu Yan, Wang Yuan-Xu. Study of structural and electronic properties of Cu-adsorbed (SiO2)n(n=1—8) clusters with the DFT. Acta Physica Sinica, 2010, 59(11): 7830-7837. doi: 10.7498/aps.59.7830
    [14] Jin Rong, Chen Xiao-Hong. Structure and properties of ZrnPd clusters by density-functional theory. Acta Physica Sinica, 2010, 59(10): 6955-6962. doi: 10.7498/aps.59.6955
    [15] Chen Liang, Xu Can, Zhang Xiao-Fang. Electronic properties of MgO nanotube clusters studied with density functional theory. Acta Physica Sinica, 2009, 58(3): 1603-1607. doi: 10.7498/aps.58.1603
    [16] Li Xi-Bo, Wang Hong-Yan, Luo Jiang-Shan, Wu Wei-Dong, Tang Yong-Jian. Density functional theory study of the geometry, stability and electronic properties of ScnO(n=1—9) clusters. Acta Physica Sinica, 2009, 58(9): 6134-6140. doi: 10.7498/aps.58.6134
    [17] Chen Yu-Hong, Kang Long, Zhang Cai-Rong, Luo Yong-Chun, Pu Zhong-Sheng. Density functional theory study of the structures and properties of (Li3N)n(n=1—5) clusters. Acta Physica Sinica, 2008, 57(7): 4174-4181. doi: 10.7498/aps.57.4174
    [18] Chen Yu-Hong, Kang Long, Zhang Cai-Rong, Luo Yong-Chun, Yuan Li-Hua, Li Yan-Long. Density functional theory study on the structures and properties of (Ca3N2)n(n=1—4) clusters. Acta Physica Sinica, 2008, 57(10): 6265-6270. doi: 10.7498/aps.57.6265
    [19] Li Xi-Bo, Luo Jiang-Shan, Guo Yun-Dong, Wu Wei-Dong, Wang Hong-Yan, Tang Yong-Jian. Density functional theory study of the stability, electronic and magnetic properties of Scn, Yn and Lan (n=2—10) clusters. Acta Physica Sinica, 2008, 57(8): 4857-4865. doi: 10.7498/aps.57.4857
    [20] Chen Yu-Hong, Zhang Cai-Rong, Ma Jun. Density functional theory study on the structure and properties of MgmBn(m=1,2;n=1—4) clusters. Acta Physica Sinica, 2006, 55(1): 171-178. doi: 10.7498/aps.55.171
Metrics
  • Abstract views:  7095
  • PDF Downloads:  93
  • Cited By: 0
Publishing process
  • Received Date:  18 August 2017
  • Accepted Date:  13 November 2017
  • Published Online:  05 February 2018

/

返回文章
返回