Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A new method of measuring boundary value of atmospheric extinction coefficient

Sun Guo-Dong Qin Lai-An Zhang Si-Long He Feng Tan Feng-Fu Jing Xu Hou Zai-Hong

Citation:

A new method of measuring boundary value of atmospheric extinction coefficient

Sun Guo-Dong, Qin Lai-An, Zhang Si-Long, He Feng, Tan Feng-Fu, Jing Xu, Hou Zai-Hong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • We construct a nonlinear equation between the return signal and the boundary value of extinction coefficient according to the lidar equation. And according to the nonlinear equation, we put forward a new method to solve the nonlinear equation by using Broyden algorithm. The Broyden algorithm is a concrete application of the quasi-Newton method. It has faster convergence and less iteration times, and does not need to calculate the derivative value. After choosing a suitable initial value, the boundary value can be obtained through the algorithm. A 532 nm single-band Mie scattering imaging lidar system is developed in Hefei, Southern China, for real-time atmospheric aerosol/particle remote sensing. Atmospheric measurement has been performed in Science Island during night time, and the time-range distribution of atmospheric backscattering signal was recorded on April 6, 2017, by employing the imaging lidar system. Then, the boundary values are achieved based on the Broyden algorithm and the least square algorithm. It adopts the Klett backward integration method to retrieve the horizontal distribution of extinction coefficients in a range of 1 km after the acquisition of the signal by changing the distance, then the horizontal atmospheric transmittance can be achieved based on the path integral. We also conduct a contrast experiment with the one-way transmission of the horizontal light near the ground within the range of 1 km at the same time. The initial site is situated in the experimental room besides the Dongpu reservoir and the end site is located on the second floor of our office building. The important things in this experiment are that the light reaching the target surface must be fully received and the laser power should be monitored at the double-end. Then we can obtain the transmittance by the direct method. By comparing the transmittance from the direct method with the transmittance from imaging lidar between the two different ways, i.e., Broyden algorithm and least square algorithm, then the correlation coefficients are obtained to be both over 0.95 in the period. And the method introduced in this paper is a little better than the least square algorithm with a value of 0.968. Besides, the average relative errors between the two inverse methods and the direct method are 4.66% and 9.10%, respectively. The average relative errors obtained by using the least square algorithm is about twice that by using the Broyden algorithm. It can be concluded that the algorithm introduced in this paper is effective and has certain advantages for the inverse problem.
      Corresponding author: Qin Lai-An, laqin@aiofm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 41405014).
    [1]

    Man S W, Kai Q, Hong L, James R C, Kwon H L 2017 Atmos. Environ. 154 189

    [2]

    Zhao G Y, Liang M, Li Y Y, Duan Z, Zhu S M, Liang M, Sune S 2017 Appl. Opt. 56 1506

    [3]

    John E B, Sebastian B, Robert B, Parikh N C 2003 Appl. Opt. 42 2647

    [4]

    Liang M, Mikkel B 2015 Opt. Express 23 A1613

    [5]

    James D K 1985 Appl. Opt. 24 1638

    [6]

    James D K 1981 Appl. Opt. 20 211

    [7]

    Liang M, Peng G, Yang Y, Zheng K 2017 Opt. Express 25 A628

    [8]

    Cao N W 2015 Optik 126 2053

    [9]

    Masap M, Nobuo T 1994 Appl. Opt. 33 6451

    [10]

    Zhou J, Yue G M, Qi F D 1998 Chin. J. Quant. Elect. 15 140 (in Chinese) [周军, 岳古明, 戚福第 1998 量子电子学报 15 140]

    [11]

    Kovalev V A 1993 Appl. Opt. 32 6053

    [12]

    Wang Z H, Wang H B, He J, Zheng Y C, Yang J G, Li Y Q, Zhao X B 2008 Laser J. 29 36 (in Chinese) [王治华, 王宏波, 何捷, 郑玉臣, 杨经国, 李跃清, 赵兴炳 2008 激光杂志 29 36]

    [13]

    Chen T, Wu D C, Liu B, Cao K F, Wang Z Z, Bo G Y, Yuan L, Zhou J 2010 Acta Opt. Sin. 30 1531 (in Chinese) [陈涛, 吴德成, 刘博, 曹开法, 王珍珠, 伯广宇, 袁林, 周军 2010 光学学报 30 1531]

    [14]

    George L, John P (translated by Li J, Ren M M) 2016 Numerical Methods Using MATLAB (Beijing: China Machine Press) pp116-117 (in Chinese) [乔治 L, 约翰 P 著 (李君, 任明明 译)2016 数值方法-MATLAB版(北京: 机械工业出版社)第116–117页]

    [15]

    Ma X M, Tao Z M, Ma M J, Li C J, Wang Z Z, Liu D, Xie C B, Wang Y J 2014 Acta Opt. Sin. 34 0201001 (in Chinese) [麻晓敏, 陶宗明, 马明俊, 李成军, 王珍珠, 刘东, 谢晨波, 王英俭 2014 光学学报 34 0201001]

    [16]

    Anne G, Timothy P C (translated by Wu Z J, Wang G Y, Fan H J) 2016 Numerical Methods (Beijing: China Machine Press) p63 (in Chinese) [安妮 G, 蒂莫西 P C著(吴兆金, 王国英, 范红军 译) 2016 数值方法(北京: 机械工业出版社)第63页]

    [17]

    Xiong X L, Jiang L H, Feng S, Zhuang Z B, Zhao J Y 2012 Infrar. Laser Eng. 41 1744 (in Chinese) [熊兴隆, 蒋立辉, 冯帅, 庄子波, 赵俊媛 2012 红外与激光工程 41 1744]

    [18]

    Sun G D, Qin L A, Cheng Z, Hou Z H 2017 Laser Optoelect. Prog. 54 090102 (in Chinese) [孙国栋, 秦来安, 程知, 侯再红 2017 激光与光电子学进展 54 090102]

    [19]

    Yang C P 2011 M. S. Dissertation (Dalian: Dalian Maritime University) (in Chinese) [杨成鹏 2011 硕士学位论文 (大连: 大连海事大学)]

    [20]

    John E B, Parikh S, Trevor B K 2007 Appl. Opt. 46 2922

  • [1]

    Man S W, Kai Q, Hong L, James R C, Kwon H L 2017 Atmos. Environ. 154 189

    [2]

    Zhao G Y, Liang M, Li Y Y, Duan Z, Zhu S M, Liang M, Sune S 2017 Appl. Opt. 56 1506

    [3]

    John E B, Sebastian B, Robert B, Parikh N C 2003 Appl. Opt. 42 2647

    [4]

    Liang M, Mikkel B 2015 Opt. Express 23 A1613

    [5]

    James D K 1985 Appl. Opt. 24 1638

    [6]

    James D K 1981 Appl. Opt. 20 211

    [7]

    Liang M, Peng G, Yang Y, Zheng K 2017 Opt. Express 25 A628

    [8]

    Cao N W 2015 Optik 126 2053

    [9]

    Masap M, Nobuo T 1994 Appl. Opt. 33 6451

    [10]

    Zhou J, Yue G M, Qi F D 1998 Chin. J. Quant. Elect. 15 140 (in Chinese) [周军, 岳古明, 戚福第 1998 量子电子学报 15 140]

    [11]

    Kovalev V A 1993 Appl. Opt. 32 6053

    [12]

    Wang Z H, Wang H B, He J, Zheng Y C, Yang J G, Li Y Q, Zhao X B 2008 Laser J. 29 36 (in Chinese) [王治华, 王宏波, 何捷, 郑玉臣, 杨经国, 李跃清, 赵兴炳 2008 激光杂志 29 36]

    [13]

    Chen T, Wu D C, Liu B, Cao K F, Wang Z Z, Bo G Y, Yuan L, Zhou J 2010 Acta Opt. Sin. 30 1531 (in Chinese) [陈涛, 吴德成, 刘博, 曹开法, 王珍珠, 伯广宇, 袁林, 周军 2010 光学学报 30 1531]

    [14]

    George L, John P (translated by Li J, Ren M M) 2016 Numerical Methods Using MATLAB (Beijing: China Machine Press) pp116-117 (in Chinese) [乔治 L, 约翰 P 著 (李君, 任明明 译)2016 数值方法-MATLAB版(北京: 机械工业出版社)第116–117页]

    [15]

    Ma X M, Tao Z M, Ma M J, Li C J, Wang Z Z, Liu D, Xie C B, Wang Y J 2014 Acta Opt. Sin. 34 0201001 (in Chinese) [麻晓敏, 陶宗明, 马明俊, 李成军, 王珍珠, 刘东, 谢晨波, 王英俭 2014 光学学报 34 0201001]

    [16]

    Anne G, Timothy P C (translated by Wu Z J, Wang G Y, Fan H J) 2016 Numerical Methods (Beijing: China Machine Press) p63 (in Chinese) [安妮 G, 蒂莫西 P C著(吴兆金, 王国英, 范红军 译) 2016 数值方法(北京: 机械工业出版社)第63页]

    [17]

    Xiong X L, Jiang L H, Feng S, Zhuang Z B, Zhao J Y 2012 Infrar. Laser Eng. 41 1744 (in Chinese) [熊兴隆, 蒋立辉, 冯帅, 庄子波, 赵俊媛 2012 红外与激光工程 41 1744]

    [18]

    Sun G D, Qin L A, Cheng Z, Hou Z H 2017 Laser Optoelect. Prog. 54 090102 (in Chinese) [孙国栋, 秦来安, 程知, 侯再红 2017 激光与光电子学进展 54 090102]

    [19]

    Yang C P 2011 M. S. Dissertation (Dalian: Dalian Maritime University) (in Chinese) [杨成鹏 2011 硕士学位论文 (大连: 大连海事大学)]

    [20]

    John E B, Parikh S, Trevor B K 2007 Appl. Opt. 46 2922

  • [1] Zhang Xin-Yuan, Hu Yi-Hua, Shen Shi-Yang, Fang Jia-Jie, Wang Yi-Cheng, Liu Yi-Fan, Han Fei. Kilometer-level laser reflective tomography experiment and debris barycenter estimation. Acta Physica Sinica, 2022, 71(11): 114205. doi: 10.7498/aps.71.20220205
    [2] Bao Dong, Hua Deng-Xin, Qi Hao, Wang Jun. Method of remotely sensing seawater salinity fine detection based on Raman Brillouin scattering. Acta Physica Sinica, 2021, 70(22): 229201. doi: 10.7498/aps.70.20210201
    [3] Li Ming-Fei, Yuan Zi-Hao, Liu Yuan-Xing, Deng Yi-Cheng, Wang Xue-Feng. Comparison between optimal configuration algorithms of fiber phased array. Acta Physica Sinica, 2021, 70(8): 084205. doi: 10.7498/aps.70.20201768
    [4] Feng Shuai, Chang Jun, Hu Yao-Yao, Wu Hao, Liu Xin. Design and analysis of polarization imaging lidar and short wave infrared composite optical receiving system. Acta Physica Sinica, 2020, 69(24): 244202. doi: 10.7498/aps.69.20200920
    [5] Liu Hou-Tong, Mao Min-Juan. An accurate inversion method of aerosol extinction coefficient about ground-based lidar without needing calibration. Acta Physica Sinica, 2019, 68(7): 074205. doi: 10.7498/aps.68.20181825
    [6] Shao Jun-Yi, Lin Zhao-Xiang, Liu Lin-Mei, Gong Wei. Measurement of absorption spectrum around 1.572 μm. Acta Physica Sinica, 2017, 66(10): 104206. doi: 10.7498/aps.66.104206
    [7] Di Hui-Ge, Hua Hang-Bo, Zhang Jia-Qi, Zhang Zhan-Fei, Hua Deng-Xin, Gao Fei, Wang Li, Xin Wen-Hui, Zhao Heng. Design and analysis of high-spectral resolution lidar discriminator. Acta Physica Sinica, 2017, 66(18): 184202. doi: 10.7498/aps.66.184202
    [8] Rao Zhi-Min, Hua Deng-Xin, He Ting-Yao, Le Jing. Research and analysis on lidar performance with intrinsic fluorescence biological aerosol measurements. Acta Physica Sinica, 2016, 65(20): 200701. doi: 10.7498/aps.65.200701
    [9] Zhu Xiang-Fei, Lin Zhao-Xiang, Liu Lin-Mei, Shao Jun-Yi, Gong Wei. Influence of temperature and pressure on absorption spectrum of around 1.6 m for differential absorption lidar. Acta Physica Sinica, 2014, 63(17): 174203. doi: 10.7498/aps.63.174203
    [10] Tan Lin-Qiu, Hua Deng-Xin, Wang Li, Gao Fei, Di Hui-Ge. Wind velocity retrieval and field widening techniques of fringe-imaging Mach-Zehnder interferometer for Doppler lidar. Acta Physica Sinica, 2014, 63(22): 224205. doi: 10.7498/aps.63.224205
    [11] Di Hui-Ge, Hua Deng-Xin, Wang Yu-Feng, Yan Qing. Investigation on the correction of the Mie scattering lidar's overlapping factor and echo signals over the total detection range. Acta Physica Sinica, 2013, 62(9): 094215. doi: 10.7498/aps.62.094215
    [12] Liang Shan-Yong, Wang Jiang-An, Zhang Feng, Wu Rong-Hua, Zong Si-Guang, Wang Yu-Hong, Wang Le-Dong. Monte Carlo model and variance reduction method based on lidar of ship wake. Acta Physica Sinica, 2013, 62(1): 015205. doi: 10.7498/aps.62.015205
    [13] Liang Shan-Yong, Wang Jiang-An, Zhang Feng, Shi Sheng-Wei, Ma Zhi-Guo, Liu Tao, Wang Yu-Hong. Large dynamic range receiving technology with energy consumption based on wake lidar. Acta Physica Sinica, 2012, 61(11): 110701. doi: 10.7498/aps.61.110701
    [14] Shen Fa-Hua, Shu Zhi-Feng, Sun Dong-Song, Wang Zhong-Chun, Xue Xiang-Hui, Chen Ting-Di, Dou Xian-Kang. Improvement of wind retrieval algorithm for Rayleigh Doppler lidar. Acta Physica Sinica, 2012, 61(3): 030702. doi: 10.7498/aps.61.030702
    [15] Lian Tian-Hong, Wang Shi-Yu, Guo Zhen, Li Bing-Bin, Cai De-Fang, Wen Jian-Guo. A coherently combined laser beam for lidar. Acta Physica Sinica, 2011, 60(12): 124208. doi: 10.7498/aps.60.124208
    [16] Shu Zhi-Feng, Dou Xian-Kang, Wang Zhong-Chun, Shen Fa-Hua, Sun Dong-Song, Xue Xiang-Hui, Chen Ting-Di. Wind retrieval algorithm of Rayleigh Doppler lidar. Acta Physica Sinica, 2011, 60(6): 060704. doi: 10.7498/aps.60.060704
    [17] Wang Min, Hu Shun-Xing, Fang Xin, Wang Shao-Lin, Cao Kai-Fa, Zhao Pei-Tao, Fan Guang-Qiang, Wang Ying-Jian. Precise correction for the troposphere target location error based on lidar. Acta Physica Sinica, 2009, 58(7): 5091-5097. doi: 10.7498/aps.58.5091
    [18] Zhang Gai-Xia, Zhao Yue-Feng, Zhang Yin-Chao, Zhao Pei-Tao. A lidar system for monitoring planetary boundary layer aerosol in daytime. Acta Physica Sinica, 2008, 57(11): 7390-7395. doi: 10.7498/aps.57.7390
    [19] Hong Guang-Lie, Zhang Yin-Chao, Zhao Yue-Feng, Shao Shi-Sheng, Tan Kun, Hu Huan-Ling. Raman lidar for profiling atmospheric CO2. Acta Physica Sinica, 2006, 55(2): 983-987. doi: 10.7498/aps.55.983
    [20] Guo Guan-Jun, Shao Yun. Rough surfaces induced speckle effects on detection performance of pulsed laser radar. Acta Physica Sinica, 2004, 53(7): 2089-2093. doi: 10.7498/aps.53.2089
Metrics
  • Abstract views:  7921
  • PDF Downloads:  192
  • Cited By: 0
Publishing process
  • Received Date:  11 September 2017
  • Accepted Date:  04 December 2017
  • Published Online:  05 March 2018

/

返回文章
返回