搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

公里级激光反射层析实验和碎片质心估计

张鑫源 胡以华 谌诗洋 方佳节 王一程 刘一凡 韩飞

引用本文:
Citation:

公里级激光反射层析实验和碎片质心估计

张鑫源, 胡以华, 谌诗洋, 方佳节, 王一程, 刘一凡, 韩飞

Kilometer-level laser reflective tomography experiment and debris barycenter estimation

Zhang Xin-Yuan, Hu Yi-Hua, Shen Shi-Yang, Fang Jia-Jie, Wang Yi-Cheng, Liu Yi-Fan, Han Fei
PDF
HTML
导出引用
  • 大功率激光清理低轨大量厘米级空间碎片一直是国际学术研究的热点. 其中, 空间碎片的精确定位和碎片质心距离的高精度测量是关键, 也是亟待解决的世界性难题. 作为一种新型远距离、高分辨率的成像方法, 激光反射层析具有成像分辨率与探测距离无关的优势, 是远距离空间暗目标探测的有效途径. 基于激光反射层析原理, 建立厘米级空间碎片目标质心模型, 分析碎片目标与探测器的相对运动, 进而提出厘米级空间碎片质心距离估计方法, 开展了1 km探测距离激光反射层析实验验证. 实验结果表明, 该方法能够将质心探测精度由1.50 cm提高到0.34 cm, 是实现厘米级空间碎片质心距离高精度测量的有效手段. 该研究实现了公里级激光反射层析实验及其理论验证的突破, 具有更广阔的应用前景和技术发展潜力.
    Removal of the numerous centimeter-level space debris in low Earth orbit by using high-power lasers is always a hot topic of international academic research. Specifically, the precise positioning of space debris and high-precision measurement of barycenter range of debris are the key points and worldwide problems that need to be promptly solved. As a new remote high-resolution imaging method, laser reflective tomography is an effective approach to detecting the dark targets in remote space with its imaging resolution independent of the detection range. Hence, a centimeter-level space debris barycenter model is established according to the principle of laser reflective tomography in order to analyze the relative movement of debris and detector. On this basis, an approach to estimating the barycenter range of centimeter-level space debris is proposed to carry out the experimental verification of 1km detection range laser reflective tomography. The experimental results show that this method can improve the accuracy of barycenter detection from 1.50 cm to 0.34 cm, which is an effective measure for realizing high-precision measurement of barycenter ranges of centimeter-level space debris. Furthermore, this study achieves a breakthrough in kilometer-level laser reflective tomography experiments and theory of validation, and the kilometer-level laser reflective tomography has a great application prospect and technical potential.
      通信作者: 胡以华, skl_hyh@163.com ; 韩飞, feihan@ustc.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61871389)、国防科技大学科研计划重大项目(批准号: ZK18-01-02)和湖南省研究生科研创新项目(批准号: CX20190055)资助的课题.
      Corresponding author: Hu Yi-Hua, skl_hyh@163.com ; Han Fei, feihan@ustc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61871389), the Research Plan Project of the National University of Defense Technology, China (Grant No. ZK18-01-02), and the Postgraduate Scientific Research Innovation Project of Hunan Province, China (Grant No. CX20190055).
    [1]

    Bonnal C, Ruault J M, Desjean M C 2013 Acta Astronaut. 85 51Google Scholar

    [2]

    Esmiller B, Jacquelard C, Eckel H A, Wnuk E 2014 Appl. Opt. 53 45Google Scholar

    [3]

    Phipps C, Birkan M, Bohn W, Eckel H A, Horisawa H, Lippert T, Michaelis M, Rezunkov Y, Sasoh A, Schall W, Scharring S, Sinko J J 2010 Propul. Power 26 609Google Scholar

    [4]

    金星, 洪延姬, 李修乾 2012 强激光与粒子束 24 281Google Scholar

    Jin X, Hong Y J, Li X Q 2012 High Power Part. Beam 24 281Google Scholar

    [5]

    洪延姬, 金星, 常浩 2016 红外与激光工程 45 9Google Scholar

    Hong Y J, Jin X, Chang H 2016 Infrared Laser Eng. 45 9Google Scholar

    [6]

    扈荆夫, 杨福民, 张忠萍, Hamal K, Prochazka I, Blazej J 2004 中国科学G辑: 物理学 力学 天文学 34 711

    Hu Y F, Yang F M, Zhang Z P, Hamal K, Prochazka I, Blazej 2004 Sci. China Ser. G 34 711

    [7]

    Li H, Chen S J, You L X, Meng W D, Wu Z B, Zhang Z P, Tang K, Zhang L, Zhang W J, Yang X Y 2016 Opt. Express 24 3535Google Scholar

    [8]

    杨福民, 陈婉珍, 张忠萍, 陈菊平, 扈荆夫, 李鑫, Prochazka I, Hamal K 2002 中国科学(A辑) 32 935Google Scholar

    Yang F M, Chen W Z, Zhang Z P, Chen J P, Hu J F, Li X, Prochazka I, Hamal K 2002 Sci. China Ser. A 32 935Google Scholar

    [9]

    孟文东, 张海峰, 邓华荣, 汤凯, 吴志波, 王煜蓉, 吴光, 张忠萍, 陈欣扬 2020 物理学报 69 019502Google Scholar

    Meng W D, Zhang H F, Deng H R, Tang K, Wu Z B, Wang Y R, Wu G, Zhang Z P, Chen X Y 2020 Acta Phys. Sin. 69 019502Google Scholar

    [10]

    李语强, 李祝莲, 伏红林, 郑向明, 何少辉, 翟东升, 熊耀恒 2011 中国激光 38 160Google Scholar

    Li Y Q, Li Z L, Fu H L, Zheng X M, He S H, Zhai D S, Xiong Y H 2011 Chin. J. Lasers 38 160Google Scholar

    [11]

    Zhang H F, Long M L, Deng H R, Cheng S Y, Wu Z B, Zhang Z P, Zhang A L, Sun J T 2021 Appl. Sci. 11 10080Google Scholar

    [12]

    Bai X R, Xing M D, Zhou F, Bao Z 2009 IEEE Trans. Geosci. Remote Sens. 47 2352Google Scholar

    [13]

    Sun T, Shan X M, Chen J 2014 IEEE Geosci. Remote S. 11 1041Google Scholar

    [14]

    Morselli A, Lizia P D, Armellin R, Bianchi G, Bortolotti C, Montebugnoli S, Naldi G, Perini F, Pupillo G, Roma M, Schiaffino M, Mattana A, Salerno E, Sergiusti A L, Magro A, Adami K Z, Villadei W, Dolce F, Reali M, Paoli J IEEE Metrology for Aerospace Italy, Benevento, June 4–5, 2015 p562

    [15]

    Xi J B, Wen D S, Ersoy O K, Yi H W, Yao D L, Song Z X, Xi S B 2016 Appl. Opt. 55 7929Google Scholar

    [16]

    胡以华, 张鑫源, 徐世龙, 赵楠翔, 石亮 2021 中国激光 48 13Google Scholar

    Hu Y H, Zhang X Y, Xu S L, Zhao N X, Shi L 2021 Chin. J. Lasers 48 13Google Scholar

    [17]

    Parker J K, Craig E B, Klick D I, Knight F K, Kulkarni S R, Marino R M, Senning J R, Tussey B K 1988 Appl. Opt. 27 2642Google Scholar

    [18]

    Matson C L, Mosley D E 2001 Appl. Opt. 40 2290Google Scholar

    [19]

    Murray J, Triscari J, Fetzer G, Epstein R, Plath J, Ryder W, Van L N Applications of Lasers for Sensing and Free Space Communications San Diego, CA, United states, January 31–February 3, 2010 pLSWA1

    [20]

    Jin X F, Sun J F, Yan Y, Zhou Y, Liu L R 2010 Opt. Commun. 283 3472Google Scholar

    [21]

    Lin F, Wang J C, Lei W H, Hu Y H 2017 Opt. Commun. 402 540Google Scholar

    [22]

    金鑫, 李亮, 陈志强, 徐荣栏, 黄娅, 张丽 2011 地球物理学报 54 1691Google Scholar

    Jin X, Li L, Chen Z Q, Xu R L, Huang Y, Zhang L 2011 Acta Petpol. Sin. 54 1691Google Scholar

    [23]

    Chen J B, Sun H Y 2020 Opt. Commun. 455 124548Google Scholar

    [24]

    谷雨, 胡以华, 郝士琦, 王金诚, 王迪 2011 光学学报 54 1691Google Scholar

    Gu Y, Hu Y H, Hao S Q, Wang J C, Wang D 2011 Acta Opt. Sin. 54 1691Google Scholar

    [25]

    Natter F, Wang G 2002 Med. Phys. 29 107Google Scholar

    [26]

    宋大伟, 尚社, 李小军, 罗熹, 孙文锋, 范晓彦, 李栋 2016 红外与激光工程 45 76Google Scholar

    Song D W, Shang S, Li X J, Luo X, Sun W F, Fan X Y, Li D 2016 Infrared Laser Eng. 45 76Google Scholar

    [27]

    金晓峰, 孙建锋, 严毅, 周煜, 刘立人 2010 光学学报 30 747Google Scholar

    Jin X F, Sun J F, Yan Y, Zhou Y, Liu L R 2010 Acta Opt. Sin. 30 747Google Scholar

    [28]

    Candes E J, Romberg J K, Tao T 2006 Commun. Pur. Appl. Math. 59 1207Google Scholar

    [29]

    Romberg J 2008 IEEE Signal Proc. Mag. 25 14Google Scholar

    [30]

    Sidky E Y, Chartrand R, Pan X C IEEE Nuclear Science Symposium and Medical Imaging Conference Honolulu, HI, United states, October 27–November 3, 2007, p3526

  • 图 1  LRT示意图 (a) 目标投影; (b) 数据反投影

    Fig. 1.  Schematic diagram of LRT: (a) Target projection; (b) data back-projection.

    图 2  LRT雷达样机原理图, 其中 R表示反射镜, NPBS表示消偏振分光棱镜, APD表示雪崩光电二极管, Pin表示光电二极管, SMF表示单模光纤, MC laser表示微片激光器

    Fig. 2.  Schematic diagram of LRT radar prototype, where R is reflector, NPBS is non-polarizing beam splitter, APD is avalanche photodiode, Pin is positive intrinsic negative, SMF is single mode fiber, and MC laser is microchip laser.

    图 3  典型空间碎片模型 (a)结构示意图; (b)遮挡效应示意图

    Fig. 3.  Typical space debris model: (a) Structure diagram; (b) diagram of shielding effect.

    图 4  (a) 实验装置图; (b) 1 km实验验证示意图

    Fig. 4.  (a) Diagram of the experimental set-up; (b) diagram of 1 km experiment verification.

    图 5  多角度激光回波和峰值点距离确定转动周期

    Fig. 5.  Multi-angle laser echoes and the peak point range determined the period of rotation.

    图 6  补全后的多角度激光回波和目标重构图像 (a) 凹面对应回波数据的FBP重构图像; (b) 凸面对应回波数据的FBP重构图像

    Fig. 6.  Multi-angle laser echoes after completion and reconstructed image of target: (a) Image reconstruction by FBP based on the echo data of concave surface; (b) image reconstruction by FBP based on the echo data of convex surface.

    图 7  采样间隔1°的目标重构图像与质心确定结果. FBP重构图像 (a) 质心距离校正前; (b) 质心距离校正后. 阈值分割图像 (c) 质心距离校正前; (d) 质心距离校正后

    Fig. 7.  Target reconstruction image with sampling interval of 1° and barycenter determination results. Image reconstruction by FBP: (a) Barycenter range before correction; (b) barycenter range after corrected. Threshold segmentation image: (c) Barycenter range before correction; (d) barycenter range after corrected.

    图 8  采样间隔7°的目标重构图像与质心确定结果. FBP重构图像 (a) 质心距离校正前; (b) 质心距离第一次校正后; (c) 质心距离第二次校正后. 阈值分割图像与质心确定结果 (d) 质心距离校正前; (e) 质心距离第一次校正后; (f) 质心距离第二次校正后

    Fig. 8.  Target reconstruction image with sampling interval of 7° and barycenter determination results. Image reconstruction by FBP: (a) Barycenter range before correction; (b) barycenter range after first corrected; (c) barycenter range after second corrected. Threshold segmentation image and barycenter determination results: (d) Barycenter range before correction; (e) barycenter range after first corrected; (f) barycenter range after second corrected.

    图 9  采样间隔20°的目标重构图像与质心确定结果. FBP重构图像 (a) 质心距离校正前; (b) 质心距离校正后. 阈值分割图像; (c) 质心距离校正前; (d) 质心距离校正后

    Fig. 9.  Target reconstruction image with sampling interval of 20° and barycenter determination results. Image reconstruction by FBP: (a) Barycenter range before correction; (b) barycenter range after corrected. Threshold segmentation image: (c) Barycenter range before correction; (d) barycenter range after corrected.

    表 1  LRT雷达样机关键参数

    Table 1.  Key parameters of the LRT radar prototype.

    参数/单位数值参数/单位数值
    工作波长$\lambda $/nm1064APD模块带宽$B{W_1}$/GHz7.5
    脉冲宽度$\tau $/ps93APD模块灵敏度${S_1}$/dBm–25.5
    单脉冲能量$E$/μJ10Pin模块带宽$B{W_2}$/GHz15
    重复频率$f$/Hz10Pin模块灵敏度${S_2}$/dBm–27
    激光发射发散角$\theta $/mrad0.22高速采集器带宽$B{W_3}$/GHz4.25
    望远系统口径D/m0.1高速采集器采样率fs/GSPS50
    望远系统视场角$\omega $/mrad0.3高速采集器触发延时t/μs6.546
    下载: 导出CSV

    表 2  采样间隔1°的目标重构图像校正前后质心距离和质心确定误差结果比较

    Table 2.  Comparison of barycenter range and determination error before or after target reconstruction image correction with sampling interval of 1°.

    类型质心距离质心确定误差
    R/m确定值E0/cm实际值E/cm
    质心距离校正前2.22461.291.54
    质心距离校正后2.23660.140.34
    下载: 导出CSV

    表 3  采样间隔7°的目标重构图像校正前后的质心距离和质心确定误差结果比较

    Table 3.  Comparison of barycenter range and determination error before or after target reconstruction image correction with sampling interval of 7°.

    类型质心距离质心确定误差
    R/m确定值E0/cm实际值E/cm
    质心距离校正前2.20212.431.79
    质心距离第一次校正后2.23200.390.80
    质心距离第二次校正后2.23500.220.50
    下载: 导出CSV

    表 4  采样间隔20°的目标重构图像校正前后质心距离和质心确定误差结果比较

    Table 4.  Comparison of barycenter range and determination error before or after target reconstruction image correction with sampling interval of 20°.

    类型质心距离质心确定误差
    R/m确定值E0/cm实际值E/cm
    质心距离校正前2.21700.702.30
    质心距离校正后2.22300.151.70
    下载: 导出CSV
  • [1]

    Bonnal C, Ruault J M, Desjean M C 2013 Acta Astronaut. 85 51Google Scholar

    [2]

    Esmiller B, Jacquelard C, Eckel H A, Wnuk E 2014 Appl. Opt. 53 45Google Scholar

    [3]

    Phipps C, Birkan M, Bohn W, Eckel H A, Horisawa H, Lippert T, Michaelis M, Rezunkov Y, Sasoh A, Schall W, Scharring S, Sinko J J 2010 Propul. Power 26 609Google Scholar

    [4]

    金星, 洪延姬, 李修乾 2012 强激光与粒子束 24 281Google Scholar

    Jin X, Hong Y J, Li X Q 2012 High Power Part. Beam 24 281Google Scholar

    [5]

    洪延姬, 金星, 常浩 2016 红外与激光工程 45 9Google Scholar

    Hong Y J, Jin X, Chang H 2016 Infrared Laser Eng. 45 9Google Scholar

    [6]

    扈荆夫, 杨福民, 张忠萍, Hamal K, Prochazka I, Blazej J 2004 中国科学G辑: 物理学 力学 天文学 34 711

    Hu Y F, Yang F M, Zhang Z P, Hamal K, Prochazka I, Blazej 2004 Sci. China Ser. G 34 711

    [7]

    Li H, Chen S J, You L X, Meng W D, Wu Z B, Zhang Z P, Tang K, Zhang L, Zhang W J, Yang X Y 2016 Opt. Express 24 3535Google Scholar

    [8]

    杨福民, 陈婉珍, 张忠萍, 陈菊平, 扈荆夫, 李鑫, Prochazka I, Hamal K 2002 中国科学(A辑) 32 935Google Scholar

    Yang F M, Chen W Z, Zhang Z P, Chen J P, Hu J F, Li X, Prochazka I, Hamal K 2002 Sci. China Ser. A 32 935Google Scholar

    [9]

    孟文东, 张海峰, 邓华荣, 汤凯, 吴志波, 王煜蓉, 吴光, 张忠萍, 陈欣扬 2020 物理学报 69 019502Google Scholar

    Meng W D, Zhang H F, Deng H R, Tang K, Wu Z B, Wang Y R, Wu G, Zhang Z P, Chen X Y 2020 Acta Phys. Sin. 69 019502Google Scholar

    [10]

    李语强, 李祝莲, 伏红林, 郑向明, 何少辉, 翟东升, 熊耀恒 2011 中国激光 38 160Google Scholar

    Li Y Q, Li Z L, Fu H L, Zheng X M, He S H, Zhai D S, Xiong Y H 2011 Chin. J. Lasers 38 160Google Scholar

    [11]

    Zhang H F, Long M L, Deng H R, Cheng S Y, Wu Z B, Zhang Z P, Zhang A L, Sun J T 2021 Appl. Sci. 11 10080Google Scholar

    [12]

    Bai X R, Xing M D, Zhou F, Bao Z 2009 IEEE Trans. Geosci. Remote Sens. 47 2352Google Scholar

    [13]

    Sun T, Shan X M, Chen J 2014 IEEE Geosci. Remote S. 11 1041Google Scholar

    [14]

    Morselli A, Lizia P D, Armellin R, Bianchi G, Bortolotti C, Montebugnoli S, Naldi G, Perini F, Pupillo G, Roma M, Schiaffino M, Mattana A, Salerno E, Sergiusti A L, Magro A, Adami K Z, Villadei W, Dolce F, Reali M, Paoli J IEEE Metrology for Aerospace Italy, Benevento, June 4–5, 2015 p562

    [15]

    Xi J B, Wen D S, Ersoy O K, Yi H W, Yao D L, Song Z X, Xi S B 2016 Appl. Opt. 55 7929Google Scholar

    [16]

    胡以华, 张鑫源, 徐世龙, 赵楠翔, 石亮 2021 中国激光 48 13Google Scholar

    Hu Y H, Zhang X Y, Xu S L, Zhao N X, Shi L 2021 Chin. J. Lasers 48 13Google Scholar

    [17]

    Parker J K, Craig E B, Klick D I, Knight F K, Kulkarni S R, Marino R M, Senning J R, Tussey B K 1988 Appl. Opt. 27 2642Google Scholar

    [18]

    Matson C L, Mosley D E 2001 Appl. Opt. 40 2290Google Scholar

    [19]

    Murray J, Triscari J, Fetzer G, Epstein R, Plath J, Ryder W, Van L N Applications of Lasers for Sensing and Free Space Communications San Diego, CA, United states, January 31–February 3, 2010 pLSWA1

    [20]

    Jin X F, Sun J F, Yan Y, Zhou Y, Liu L R 2010 Opt. Commun. 283 3472Google Scholar

    [21]

    Lin F, Wang J C, Lei W H, Hu Y H 2017 Opt. Commun. 402 540Google Scholar

    [22]

    金鑫, 李亮, 陈志强, 徐荣栏, 黄娅, 张丽 2011 地球物理学报 54 1691Google Scholar

    Jin X, Li L, Chen Z Q, Xu R L, Huang Y, Zhang L 2011 Acta Petpol. Sin. 54 1691Google Scholar

    [23]

    Chen J B, Sun H Y 2020 Opt. Commun. 455 124548Google Scholar

    [24]

    谷雨, 胡以华, 郝士琦, 王金诚, 王迪 2011 光学学报 54 1691Google Scholar

    Gu Y, Hu Y H, Hao S Q, Wang J C, Wang D 2011 Acta Opt. Sin. 54 1691Google Scholar

    [25]

    Natter F, Wang G 2002 Med. Phys. 29 107Google Scholar

    [26]

    宋大伟, 尚社, 李小军, 罗熹, 孙文锋, 范晓彦, 李栋 2016 红外与激光工程 45 76Google Scholar

    Song D W, Shang S, Li X J, Luo X, Sun W F, Fan X Y, Li D 2016 Infrared Laser Eng. 45 76Google Scholar

    [27]

    金晓峰, 孙建锋, 严毅, 周煜, 刘立人 2010 光学学报 30 747Google Scholar

    Jin X F, Sun J F, Yan Y, Zhou Y, Liu L R 2010 Acta Opt. Sin. 30 747Google Scholar

    [28]

    Candes E J, Romberg J K, Tao T 2006 Commun. Pur. Appl. Math. 59 1207Google Scholar

    [29]

    Romberg J 2008 IEEE Signal Proc. Mag. 25 14Google Scholar

    [30]

    Sidky E Y, Chartrand R, Pan X C IEEE Nuclear Science Symposium and Medical Imaging Conference Honolulu, HI, United states, October 27–November 3, 2007, p3526

  • [1] 鲍冬, 华灯鑫, 齐豪, 王骏. 基于拉曼-布里渊散射的海水盐度精细探测遥感方法. 物理学报, 2021, 70(22): 229201. doi: 10.7498/aps.70.20210201
    [2] 李明飞, 袁梓豪, 刘院省, 邓意成, 王学锋. 光纤相控阵稀疏排布优化算法对比. 物理学报, 2021, 70(8): 084205. doi: 10.7498/aps.70.20201768
    [3] 冯帅, 常军, 胡瑶瑶, 吴昊, 刘鑫. 偏振成像激光雷达与短波红外复合光学接收系统设计与分析. 物理学报, 2020, 69(24): 244202. doi: 10.7498/aps.69.20200920
    [4] 刘厚通, 毛敏娟. 一种无需定标的地基激光雷达气溶胶消光系数精确反演方法. 物理学报, 2019, 68(7): 074205. doi: 10.7498/aps.68.20181825
    [5] 孙国栋, 秦来安, 张巳龙, 何枫, 谭逢富, 靖旭, 侯再红. 一种测量大气消光系数边界值的新方法. 物理学报, 2018, 67(5): 054205. doi: 10.7498/aps.67.20172008
    [6] 邵君宜, 林兆祥, 刘林美, 龚威. 1.572 μm附近CO2吸收光谱的测量. 物理学报, 2017, 66(10): 104206. doi: 10.7498/aps.66.104206
    [7] 狄慧鸽, 华杭波, 张佳琪, 张战飞, 华灯鑫, 高飞, 汪丽, 辛文辉, 赵恒. 高光谱分辨率激光雷达鉴频器的设计与分析. 物理学报, 2017, 66(18): 184202. doi: 10.7498/aps.66.184202
    [8] 饶志敏, 华灯鑫, 何廷尧, 乐静. 基于本征荧光的生物气溶胶测量激光雷达性能. 物理学报, 2016, 65(20): 200701. doi: 10.7498/aps.65.200701
    [9] 朱湘飞, 林兆祥, 刘林美, 邵君宜, 龚威. 温度压强对CO2吸收光谱的影响. 物理学报, 2014, 63(17): 174203. doi: 10.7498/aps.63.174203
    [10] 谭林秋, 华灯鑫, 汪丽, 高飞, 狄慧鸽. Mach-Zehnder干涉仪条纹成像多普勒激光雷达风速反演及视场展宽技术. 物理学报, 2014, 63(22): 224205. doi: 10.7498/aps.63.224205
    [11] 狄慧鸽, 华灯鑫, 王玉峰, 闫庆. 米散射激光雷达重叠因子及全程回波信号标定技术研究. 物理学报, 2013, 62(9): 094215. doi: 10.7498/aps.62.094215
    [12] 梁善勇, 王江安, 张峰, 吴荣华, 宗思光, 王雨虹, 王乐东. 基于舰船尾流激光雷达的Monte Carlo模型及方差消减方法研究. 物理学报, 2013, 62(1): 015205. doi: 10.7498/aps.62.015205
    [13] 梁善勇, 王江安, 张峰, 石晟玮, 马治国, 刘涛, 王雨虹. 基于尾流激光雷达的能量对消式大动态接收技术. 物理学报, 2012, 61(11): 110701. doi: 10.7498/aps.61.110701
    [14] 沈法华, 舒志峰, 孙东松, 王忠纯, 薛向辉, 陈廷娣, 窦贤康. Rayleigh散射Doppler激光雷达风场反演方法改进. 物理学报, 2012, 61(3): 030702. doi: 10.7498/aps.61.030702
    [15] 连天虹, 王石语, 过振, 李兵斌, 蔡德芳, 文建国. 用于激光雷达的相干合成光束研究. 物理学报, 2011, 60(12): 124208. doi: 10.7498/aps.60.124208
    [16] 沈法华, 舒志峰, 孙东松, 王忠纯, 薛向辉, 陈廷娣, 窦贤康. 瑞利散射多普勒激光雷达风场反演方法. 物理学报, 2011, 60(6): 060704. doi: 10.7498/aps.60.060704
    [17] 王敏, 胡顺星, 方欣, 汪少林, 曹开法, 赵培涛, 范广强, 王英俭. 激光雷达精确修正对流层目标定位误差. 物理学报, 2009, 58(7): 5091-5097. doi: 10.7498/aps.58.5091
    [18] 张改霞, 赵曰峰, 张寅超, 赵培涛. 激光雷达白天探测大气边界层气溶胶. 物理学报, 2008, 57(11): 7390-7395. doi: 10.7498/aps.57.7390
    [19] 洪光烈, 张寅超, 赵曰峰, 邵石生, 谭 锟, 胡欢陵. 探测大气中CO2的Raman激光雷达. 物理学报, 2006, 55(2): 983-987. doi: 10.7498/aps.55.983
    [20] 郭冠军, 邵 芸. 激光散斑效应对激光雷达探测性能的影响. 物理学报, 2004, 53(7): 2089-2093. doi: 10.7498/aps.53.2089
计量
  • 文章访问数:  5119
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-29
  • 修回日期:  2022-02-27
  • 上网日期:  2022-03-09
  • 刊出日期:  2022-06-05

/

返回文章
返回