Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Beat frequency error rectifying in multi-beam laser coherent remote tmaging

Zhang Yu Luo Xiu-Juan Liu Hui Chen Ming-Lai Lan Fu-Yang Jia Hui Cao Bei

Citation:

Beat frequency error rectifying in multi-beam laser coherent remote tmaging

Zhang Yu, Luo Xiu-Juan, Liu Hui, Chen Ming-Lai, Lan Fu-Yang, Jia Hui, Cao Bei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Coherent imaging with a multi-beam laser is considered as a key technique in ground based imaging. The image quality is directly determined by stability and consistency of each beam in transmitter. Although the stabilities of laser frequency and the drifting compensation methods have been studied previously, they mostly focused on the laser source. In most cases, especially in large transmitter array, however, transmitted beams are always disturbed by different influential factors, such as frequency drift induced by acoustic-optical modulation (AOM) and high power driven amplification. Therefore this kind of frequency drifting needs further rectification. Aiming at this problem, in this paper we propose two new methods called dynamic demodulation and dependence range demodulation. Firstly, the dynamic demodulation takes the whole drifting frequency drift as a changing procedure. It is believed that the beat frequency drifted at any position still carries the target information, so the system demodulates the signal at that drifted position. According to this method, the response speed of the demodulation system should be very high. But in a real system this acquisition is too high to be satisfied. It cannot work as quickly as expected. In computer simulation some slow varying drifts are induced at the beat frequency and the variation is distributed only in three parts of spatial frequency of transmitter interfering array. Simulation results show that this method may well compensate for slow drifting beat frequency. While its response speed is often limited by hardware system. On the other hand, for the dependence range demodulation, the beat drifting range is considered as a useful district, in which all the beat energy is added and demodulated at a preset position. An experiment is carried out to verify this method. The result demonstrates that it can well restrict the beat frequency drift within 100 Hz, which often happens in the procedure of AOM and driving amplification. Besides the laboratory setup research, the field experiments in 200 m and 1.5 km range are also carried out. The dependence range demodulation is proved to be well performed as well. The resolution of the 25 cm simulated target in 1.5 km reaches 0.008 rad. In the consideration of real system, the imaging range is further expanded and the amplifier power is stronger. The field experiments reveal that this demodulation method is applicable in such a condition. Therefore the research in this article provides some new techniques for the remote high resolution imaging in multi-beam laser interfering imaging.
      Corresponding author: Zhang Yu, yuzhang16@opt.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61505248) and Research Foundation of General Equipment Department, China (Grant No. 9140A21020115ZK18001).
    [1]

    Holmes R B, Ma S, Bhowmik A, Greninger C 1996 J. Opt. Soc. Am. A 13 351

    [2]

    Lu C M, Gao X, Tang J, Wang J J 2012 Proc. SPIE 8551 855110

    [3]

    Zhang W X, Xiang L B, Kong X X, Li Y, Wu Z, Zhou Z S 2013 Acta Phys. Sin. 62 164203 (in Chinese)[张文喜, 相里斌, 孔新新, 李扬, 伍州, 周志盛 2013 物理学报 62 164203]

    [4]

    Zhang Y, Luo X J, Cao B, Chen M L, Liu H, Xia A L, Lan F Y 2016 Acta Phys. Sin. 65 114201 (in Chinese)[张羽, 罗秀娟, 曹蓓, 陈明徕, 刘辉, 夏爱利, 兰富洋 2016 物理学报 65 114201]

    [5]

    Dong L, Wang B, Liu X Y 2010 Chin. J. Opt. Appl. Opt. 3 440 (in Chinese)[董磊, 王斌, 刘欣悦 2010 中国光学与应用光学 3 440]

    [6]

    Hutchin R A 2012 US Patent 0292481 A1

    [7]

    Chen M L, Luo X J, Zhang Y, Lan F Y, Liu H, Cao B, Xia A L 2017 Acta Phys. Sin. 66 024203 (in Chinese)[陈明徕, 罗秀娟, 张羽, 兰富洋, 刘辉, 曹蓓, 夏爱利 2017 物理学报 66 024203]

    [8]

    Lu C M, Chen M L, Luo X J, Zhang Y, Liu H, Lan F Y, Cao B 2017 Acta Phys. Sin. 66 114201 (in Chinese)[陆长明, 陈明徕, 罗秀娟, 张羽, 刘辉, 兰富洋, 曹蓓 2017 物理学报 66 114201]

    [9]

    Lan F Y, Luo X J, Chen M L, Zhang Y, Liu H 2017 Acta Phys. Sin. 66 204202 (in Chinese)[兰富洋, 罗秀娟, 陈明徕, 张羽, 刘辉 2017 物理学报 66 204202]

    [10]

    Montilla I, Bechet C, Louarn L, Reyes M 2010 J. Opt. Soc. Am. 27 A9

    [11]

    William T 2012 Appl. Opt. 51 A11

    [12]

    Daissy H, Garces, William T 2010 Digital Holography and Three-Dimensional Imaging (Miami) DTuB8

    [13]

    Stephen T, Ridgway, Kenneth H 2010 Proc. SPIE 7735 77356Z-1

    [14]

    Kong X X, Huang M, Zhang W X 2012 Acta Opt. Sin. 32 1211001 (in Chinese)[孔新新, 黄旻, 张文喜 2012 光学学报 32 1211001]

    [15]

    Kong X X, Huang M, Zhang W X, Wu Z, Li Y, Zhou Z S 2013 Laser Optoelectron. Prog. 50 011102 (in Chinese)[孔新新, 黄旻, 张文喜, 伍洲, 李扬, 周志盛 2013 激光与光电子学进展 50 011102]

    [16]

    Cao B, Luo X J, Chen M L, Zhang Y 2015 Acta Phys. Sin. 64 124205 (in Chinese)[曹蓓, 罗秀娟, 陈明徕, 张羽 2015 物理学报 64 124205]

    [17]

    Chen W, Li Q, Wang Y G 2010 Acta Opt. Sin. 30 3441 (in Chinese)[陈卫, 黎全, 王雁桂 2010 光学学报 30 3441]

    [18]

    Holmes R B, Brinkley T 1996 Proc. SPIE 3815 11

    [19]

    Cuellar E L, Cooper J, Mathis J, Fairchild P 2008 Proc. SPIE 7094 70940G

    [20]

    Matwyschuk A 2017 Appl. Opt. 56 7766

    [21]

    Mansmann R, Thomson K, Smallwood G, Dreier T, Schulz C 2017 Opt. Express 25 2413

  • [1]

    Holmes R B, Ma S, Bhowmik A, Greninger C 1996 J. Opt. Soc. Am. A 13 351

    [2]

    Lu C M, Gao X, Tang J, Wang J J 2012 Proc. SPIE 8551 855110

    [3]

    Zhang W X, Xiang L B, Kong X X, Li Y, Wu Z, Zhou Z S 2013 Acta Phys. Sin. 62 164203 (in Chinese)[张文喜, 相里斌, 孔新新, 李扬, 伍州, 周志盛 2013 物理学报 62 164203]

    [4]

    Zhang Y, Luo X J, Cao B, Chen M L, Liu H, Xia A L, Lan F Y 2016 Acta Phys. Sin. 65 114201 (in Chinese)[张羽, 罗秀娟, 曹蓓, 陈明徕, 刘辉, 夏爱利, 兰富洋 2016 物理学报 65 114201]

    [5]

    Dong L, Wang B, Liu X Y 2010 Chin. J. Opt. Appl. Opt. 3 440 (in Chinese)[董磊, 王斌, 刘欣悦 2010 中国光学与应用光学 3 440]

    [6]

    Hutchin R A 2012 US Patent 0292481 A1

    [7]

    Chen M L, Luo X J, Zhang Y, Lan F Y, Liu H, Cao B, Xia A L 2017 Acta Phys. Sin. 66 024203 (in Chinese)[陈明徕, 罗秀娟, 张羽, 兰富洋, 刘辉, 曹蓓, 夏爱利 2017 物理学报 66 024203]

    [8]

    Lu C M, Chen M L, Luo X J, Zhang Y, Liu H, Lan F Y, Cao B 2017 Acta Phys. Sin. 66 114201 (in Chinese)[陆长明, 陈明徕, 罗秀娟, 张羽, 刘辉, 兰富洋, 曹蓓 2017 物理学报 66 114201]

    [9]

    Lan F Y, Luo X J, Chen M L, Zhang Y, Liu H 2017 Acta Phys. Sin. 66 204202 (in Chinese)[兰富洋, 罗秀娟, 陈明徕, 张羽, 刘辉 2017 物理学报 66 204202]

    [10]

    Montilla I, Bechet C, Louarn L, Reyes M 2010 J. Opt. Soc. Am. 27 A9

    [11]

    William T 2012 Appl. Opt. 51 A11

    [12]

    Daissy H, Garces, William T 2010 Digital Holography and Three-Dimensional Imaging (Miami) DTuB8

    [13]

    Stephen T, Ridgway, Kenneth H 2010 Proc. SPIE 7735 77356Z-1

    [14]

    Kong X X, Huang M, Zhang W X 2012 Acta Opt. Sin. 32 1211001 (in Chinese)[孔新新, 黄旻, 张文喜 2012 光学学报 32 1211001]

    [15]

    Kong X X, Huang M, Zhang W X, Wu Z, Li Y, Zhou Z S 2013 Laser Optoelectron. Prog. 50 011102 (in Chinese)[孔新新, 黄旻, 张文喜, 伍洲, 李扬, 周志盛 2013 激光与光电子学进展 50 011102]

    [16]

    Cao B, Luo X J, Chen M L, Zhang Y 2015 Acta Phys. Sin. 64 124205 (in Chinese)[曹蓓, 罗秀娟, 陈明徕, 张羽 2015 物理学报 64 124205]

    [17]

    Chen W, Li Q, Wang Y G 2010 Acta Opt. Sin. 30 3441 (in Chinese)[陈卫, 黎全, 王雁桂 2010 光学学报 30 3441]

    [18]

    Holmes R B, Brinkley T 1996 Proc. SPIE 3815 11

    [19]

    Cuellar E L, Cooper J, Mathis J, Fairchild P 2008 Proc. SPIE 7094 70940G

    [20]

    Matwyschuk A 2017 Appl. Opt. 56 7766

    [21]

    Mansmann R, Thomson K, Smallwood G, Dreier T, Schulz C 2017 Opt. Express 25 2413

  • [1] Xu Hua-Feng, Zhang Xing-Yu, Wang Ren-Jie. Propagation properties of partially coherent vector beam with multiple off-axis vortex phases. Acta Physica Sinica, 2024, 73(3): 034201. doi: 10.7498/aps.73.20231484
    [2] Ge Yang-Yang, He Zhuo-Fen, Huang Li-Lin, Lin Dan-Ying, Cao Hui-Qun, Qu Jun-Le, Yu Bin. Flat-field multiplexed multifocal structured illumination super-resolution microscopy. Acta Physica Sinica, 2022, 71(4): 048704. doi: 10.7498/aps.71.20211712
    [3] Flat-field multiplexed multifocal structured illumination super-resolution microscopy. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211712
    [4] Lu Chang-Ming, Chen Ming-Lai, Luo Xiu-Juan, Zhang Yu, Liu Hui, Lan Fu-Yang, Cao Bei. Target reconstruction algorithm for four-beam sheared coherent imaging. Acta Physica Sinica, 2017, 66(11): 114201. doi: 10.7498/aps.66.114201
    [5] Pan An, Wang Dong, Shi Yi-Shi, Yao Bao-Li, Ma Zhen, Han Yang. Incoherent ptychography in Fresnel domain with simultaneous multi-wavelength illumination. Acta Physica Sinica, 2016, 65(12): 124201. doi: 10.7498/aps.65.124201
    [6] Zhao Xiao-Na, Zhuang Yu-Xin, Wang Zhong. Study on the relationship between coherent population beating signal and the coherence of ground-state hyperfine sublevels. Acta Physica Sinica, 2015, 64(13): 134203. doi: 10.7498/aps.64.134203
    [7] Cheng Zhi-Yuan, Ma Cai-Wen, Luo Xiu-Juan, Zhang Yu, Zhu Xiang-Ping, Xia Ai-Li. Improving coherent field imaging quality by suppressing the influence of transmitting aperture spacing error. Acta Physica Sinica, 2015, 64(12): 124203. doi: 10.7498/aps.64.124203
    [8] Cao Bei, Luo Xiu-Juan, Chen Ming-Lai, Zhang Yu. All-phase target reconstruction method for coherent field imaging. Acta Physica Sinica, 2015, 64(12): 124205. doi: 10.7498/aps.64.124205
    [9] Cao Bei, Luo Xiu-Juan, Si Qing-Dan, Zeng Zhi-Hong. Four-phase closure algorithm for coherent field imaging. Acta Physica Sinica, 2015, 64(5): 054204. doi: 10.7498/aps.64.054204
    [10] Huang Su-Juan, Gu Ting-Ting, Miao Zhuang, He Chao, Wang Ting-Yun. Experimental study on multiple-ring vortex beams. Acta Physica Sinica, 2014, 63(24): 244103. doi: 10.7498/aps.63.244103
    [11] Liu Shuang-Long, Liu Wei, Chen Dan-Ni, Niu Han-Ben. Generation of dark hollow beams used in sub-diffraction-limit imaging in coherent anti-Stokes Raman scattering microscopy. Acta Physica Sinica, 2014, 63(21): 214601. doi: 10.7498/aps.63.214601
    [12] Tan Yi, Li Xin-Yang. Influence of filling factor on far-field intensity distribution in coherent beam combination. Acta Physica Sinica, 2014, 63(9): 094202. doi: 10.7498/aps.63.094202
    [13] Si Qing-Dan, Luo Xiu-Juan, Zeng Zhi-Hong. Analyses on limitations of coherent field imaging principle. Acta Physica Sinica, 2014, 63(10): 104203. doi: 10.7498/aps.63.104203
    [14] Zhang Ze, Liu Jing-Jiao, Zhang Peng, Ni Pei-Gen, Prakash Jai, Hu Yang, Jiang Dong-Sheng, Christodoulides Demetrios N, Chen Zhi-Gang. Generation of autofocusing beams with multi-Airy beams. Acta Physica Sinica, 2013, 62(3): 034209. doi: 10.7498/aps.62.034209
    [15] Deng Jin-Ping, Ji Xiao-Ling, Lu Lu. Propagation of polychromatic partially coherent decentred laser beams propagating in non-Kolmogorov turbulence. Acta Physica Sinica, 2013, 62(14): 144211. doi: 10.7498/aps.62.144211
    [16] Xiang Li-Bin, Zhang Wen-Xi, Wu Zhou, Lü Xiao-Yu, Li Yang, Zhou Zhi-Sheng, Kong Xin-Xin. Optical transfer function of coherent field imaging based on deviation of receptors. Acta Physica Sinica, 2013, 62(22): 224201. doi: 10.7498/aps.62.224201
    [17] Zhang Wen-Xi, Xiang Li-Bin, Kong Xin-Xin, Li Yang, Wu Zhou, Zhou Zhi-Sheng. Resolution of coherent field imaging technique. Acta Physica Sinica, 2013, 62(16): 164203. doi: 10.7498/aps.62.164203
    [18] Liu Dong-Bing, Cheng Jin-Ming, Qi Shuang-Xi, Wang Wan-Li, Qian Wei-Xin. Spatial correlation properties of focused spatially and spectrally partially coherent Hemite-Gaussian pulsed beams. Acta Physica Sinica, 2012, 61(24): 244202. doi: 10.7498/aps.61.244202
    [19] Ji Xiao-Ling. Influence of turbulence on the Rayleigh range of partially coherent cosh-Gaussian beams. Acta Physica Sinica, 2011, 60(6): 064207. doi: 10.7498/aps.60.064207
    [20] Xu Han, Chang Wen-Wei, Yin Yan. Frequency shift of laser pulse propagating in wakefield. Acta Physica Sinica, 2004, 53(1): 171-175. doi: 10.7498/aps.53.171
Metrics
  • Abstract views:  6004
  • PDF Downloads:  169
  • Cited By: 0
Publishing process
  • Received Date:  26 September 2017
  • Accepted Date:  09 December 2017
  • Published Online:  20 February 2019

/

返回文章
返回