Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Method of simplifying Boltzmann-Hamel equation in holonomic system with frame field theory

Zhang Su-Xia Chen Wei-Ting

Citation:

Method of simplifying Boltzmann-Hamel equation in holonomic system with frame field theory

Zhang Su-Xia, Chen Wei-Ting
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Boltzmann-Hamel equation using quasi-velocities as variable quantities instead of generalized-velocities,is an extending form of the classical Lagrange equation.It is widely used for establishing the motion equations in constrained mechanical systems because of its unique structure.The classical method to solve Boltzmann-Hamel equation includes two steps.The first step is to substitute the relationship between the quasi-velocities and generalized-velocities into the equation to establish the second order equation relating to generalized-coordinates.The second step is to search for the analytical solutions using the method of separating variables or the method of Lie groups.However this method is not very effective in practice.In fact,the majority of studies only focus on the similarity between the quasi-coordinate form and the linear non-holonomic constraint form,without considering the effects of the selection of quasi-coordinates on the Boltzmann-Hamel equation.Because the quasi-coordinates in Boltzmann-Hamel equation can be selected freely,the problem of simplifying the Boltzmann-Hamel equation in holonomic system by choosing the appropriate quasi-coordinates is studied in this paper.Using the method of geometrodynamic analysis,the relationship between quasi-coordinates in the time-invariant configuration space and frame field is indicated based on the frame field theory of manifolds.The Boltzmann-Hamel equation in holonomic system is then derived from the tangle of geometric invariance.It differs from the ordinary methods,such as the action principle or d'Alembert's method.It is demonstrated that Boltzmann-Hamel equation can be simplified into an integrable form in homogenous configuration space with zero generalized-force or zero curvature configuration space with non-zero generalized-force.The process of simplifying the equation is provided in detail and the feasibility of this method is verified through two examples.The result in this paper reveals the close link between the intrinsic curvature of the time-invariant configuration space and the structure of Boltzmann-Hamel equation.The simplest form of Boltzmann-Hamel equation under the generalized-coordinate bases field (Lagrange equation) corresponds to the configuration space of zero curvature,and the simplest form of Boltzmann-Hamel equation under the frame field corresponds to the homogenous configuration space (more often,constant curvature space).For the complex motion equations,it should be transformed first into Boltzmann-Hamel equation,then the intrinsic curvature of the time-invariant configuration space will be calculated.If the conditions mentioned in this paper are satisfied, the Boltzmann-Hamel equation can be simplified into the simplest form by choosing appropriate quasi-coordinates,from which,the analytical solutions can be obtained,furthermore,this frame field derived by the appropriate quasi-coordinates can be used as a tool to study the symmetry and the conserved quantity of this holonomic mechanical system.The results in this paper provide a new way to search for the analytical solution of motion equations.
      Corresponding author: Zhang Su-Xia, zhangsux@tju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51479136, 51009107) and the Natural Science Foundation of Tianjin, China (Grant No. 17JCYBJC18700).
    [1]

    Boltzmann L 1902 Sitz. Math. Natur. Akad. Wiss. B 11 1603

    [2]

    Hamel G 1904 Math. Phys. 50 1

    [3]

    Hamel G 1938 Art. Sitz. Math. Ges. 37 4

    [4]

    Tang C L, Shi R C 1989 J. Beijing. Inst. Tech. 9 35 (in Chinese) [唐传龙, 史荣昌 1989 北京理工大学学报 9 35]

    [5]

    Qiu R 1997 Appl. Math. Mech. 18 1033 (in Chinese) [邱荣 1997 应用数学和力学 18 1033]

    [6]

    Lü Z Q 1994 Jiangxi Sci. 12 195 (in Chinese) [吕哲勤 1994 江西科学 12 195]

    [7]

    Zhou R L, Chen L Q 1993 J. Anshan. Ins. I. S. Tech. 16 46 (in Chinese) [周瑞礼, 陈立群 1993 鞍山钢铁学院学报 16 46]

    [8]

    Zhang J F, Zhang H Z 1990 J. Zhejiang Norm. Univ. (Nat. Sci. Ed.) 13 61 (in Chinese) [张解放, 张洪忠 1990 浙江师范大学学报(自然科学版) 13 61]

    [9]

    Zhang Y, Wu R H, Mei F X 1999 Shanghai J. Mech. 20 196 (in Chinese) [张毅, 吴润衡, 梅凤翔 1999 上海力学 20 196]

    [10]

    Mei F X 1985 The Foundations of Mechanics of Nonholonomic System (Beijing: Beijing Institute of Technology Press) pp87-89 (in Chinese) [梅凤翔 1985 非完整系统力学基础 (北京: 北京工业学院出版社) 第87–89页]

    [11]

    Zhang J F 1990 Huanghuai. J. 6 13 (in Chinese) [张解放 1990 黄淮学刊 6 13]

    [12]

    Fu J L, Liu R W, Mei F X 1998 J. Beijing Inst. Tech. 7 215

    [13]

    Fu J L, Liu R W 2000 Acta Math. Sci. 20 63 (in Chinese) [傅景礼, 刘荣万 2000 数学物理学报 20 63]

    [14]

    Fu J L, Chen L Q 2004 The Progress of Research for Mathematics Mechanics Physics and High New Technology (Vol. 2004 (10)) (Chengdu: Southwest Jiaotong University Press) pp124-132 (in Chinese) [傅景礼, 陈立群 2004 数学·力学·物理学·高新技术研究进展 2004 (10) 卷 (成都:西南交通大学出版社) 第124–132页]

    [15]

    Xu X J, Mei F X 2005 Acta Phys. Sin. 54 5521 (in Chinese) [许学军, 梅凤翔 2005 物理学报 54 5521]

    [16]

    Xue Y, Liu Y Z, Chen L Q 2006 Acta Phys. Sin. 55 3845 (in Chinese) [薛纭, 刘延柱, 陈立群 2006 物理学报 55 3845]

    [17]

    Zhang Q, Liu Z B, Cai Y 2008 Chin. J. Aeronaut. 21 471 (in Chinese) [战强, 刘增波, 蔡尧 2008 中国航空学报 21 471]

    [18]

    Xie J F, Pang S, Zou J T, Li G F 2012 Acta Phys. Sin. 61 230201 (in Chinese) [谢加芳, 庞硕, 邹杰涛, 李国富 2012 物理学报 61 230201]

    [19]

    Jarzebowska E M 2015 Selected Papers from CSNDD Agadir, Morocco, May 21-23, 2014 p167

    [20]

    Arnold V I (translated by Qi M Y) 2006 Mathematical Methods of Classical Mechanics (4th Ed.) (Beijing: Higher Education Press) pp59-69 (in Chinese) [阿诺尔德 著 (齐民友 译) 2006 经典力学的数学方法(第四版) (北京:高等教育出版社) 第59–69页]

    [21]

    Chern S S, Chen W H 2001 Lectures on Differential Geometry (2nd Ed.) (Beijing: Peking University Press) pp30-38 (in Chinese) [陈省身, 陈维桓 2001 微分几何讲义(第二版) (北京:北京大学出版社) 第30–38页]

    [22]

    Landau L D, Lifshitz E M (translated by Lu X, Ren L, Yuan B N) 2012 The Classical Theory of Fields (8th Ed.) (Beijing: Higher Education Press) p426 (in Chinese) [朗道, 栗弗席兹 (鲁欣, 任朗, 袁炳南 译) 2012 场论(第八版) (北京:高等教育出版社) 第426页]

  • [1]

    Boltzmann L 1902 Sitz. Math. Natur. Akad. Wiss. B 11 1603

    [2]

    Hamel G 1904 Math. Phys. 50 1

    [3]

    Hamel G 1938 Art. Sitz. Math. Ges. 37 4

    [4]

    Tang C L, Shi R C 1989 J. Beijing. Inst. Tech. 9 35 (in Chinese) [唐传龙, 史荣昌 1989 北京理工大学学报 9 35]

    [5]

    Qiu R 1997 Appl. Math. Mech. 18 1033 (in Chinese) [邱荣 1997 应用数学和力学 18 1033]

    [6]

    Lü Z Q 1994 Jiangxi Sci. 12 195 (in Chinese) [吕哲勤 1994 江西科学 12 195]

    [7]

    Zhou R L, Chen L Q 1993 J. Anshan. Ins. I. S. Tech. 16 46 (in Chinese) [周瑞礼, 陈立群 1993 鞍山钢铁学院学报 16 46]

    [8]

    Zhang J F, Zhang H Z 1990 J. Zhejiang Norm. Univ. (Nat. Sci. Ed.) 13 61 (in Chinese) [张解放, 张洪忠 1990 浙江师范大学学报(自然科学版) 13 61]

    [9]

    Zhang Y, Wu R H, Mei F X 1999 Shanghai J. Mech. 20 196 (in Chinese) [张毅, 吴润衡, 梅凤翔 1999 上海力学 20 196]

    [10]

    Mei F X 1985 The Foundations of Mechanics of Nonholonomic System (Beijing: Beijing Institute of Technology Press) pp87-89 (in Chinese) [梅凤翔 1985 非完整系统力学基础 (北京: 北京工业学院出版社) 第87–89页]

    [11]

    Zhang J F 1990 Huanghuai. J. 6 13 (in Chinese) [张解放 1990 黄淮学刊 6 13]

    [12]

    Fu J L, Liu R W, Mei F X 1998 J. Beijing Inst. Tech. 7 215

    [13]

    Fu J L, Liu R W 2000 Acta Math. Sci. 20 63 (in Chinese) [傅景礼, 刘荣万 2000 数学物理学报 20 63]

    [14]

    Fu J L, Chen L Q 2004 The Progress of Research for Mathematics Mechanics Physics and High New Technology (Vol. 2004 (10)) (Chengdu: Southwest Jiaotong University Press) pp124-132 (in Chinese) [傅景礼, 陈立群 2004 数学·力学·物理学·高新技术研究进展 2004 (10) 卷 (成都:西南交通大学出版社) 第124–132页]

    [15]

    Xu X J, Mei F X 2005 Acta Phys. Sin. 54 5521 (in Chinese) [许学军, 梅凤翔 2005 物理学报 54 5521]

    [16]

    Xue Y, Liu Y Z, Chen L Q 2006 Acta Phys. Sin. 55 3845 (in Chinese) [薛纭, 刘延柱, 陈立群 2006 物理学报 55 3845]

    [17]

    Zhang Q, Liu Z B, Cai Y 2008 Chin. J. Aeronaut. 21 471 (in Chinese) [战强, 刘增波, 蔡尧 2008 中国航空学报 21 471]

    [18]

    Xie J F, Pang S, Zou J T, Li G F 2012 Acta Phys. Sin. 61 230201 (in Chinese) [谢加芳, 庞硕, 邹杰涛, 李国富 2012 物理学报 61 230201]

    [19]

    Jarzebowska E M 2015 Selected Papers from CSNDD Agadir, Morocco, May 21-23, 2014 p167

    [20]

    Arnold V I (translated by Qi M Y) 2006 Mathematical Methods of Classical Mechanics (4th Ed.) (Beijing: Higher Education Press) pp59-69 (in Chinese) [阿诺尔德 著 (齐民友 译) 2006 经典力学的数学方法(第四版) (北京:高等教育出版社) 第59–69页]

    [21]

    Chern S S, Chen W H 2001 Lectures on Differential Geometry (2nd Ed.) (Beijing: Peking University Press) pp30-38 (in Chinese) [陈省身, 陈维桓 2001 微分几何讲义(第二版) (北京:北京大学出版社) 第30–38页]

    [22]

    Landau L D, Lifshitz E M (translated by Lu X, Ren L, Yuan B N) 2012 The Classical Theory of Fields (8th Ed.) (Beijing: Higher Education Press) p426 (in Chinese) [朗道, 栗弗席兹 (鲁欣, 任朗, 袁炳南 译) 2012 场论(第八版) (北京:高等教育出版社) 第426页]

  • [1] Peng Ao-Ping, Li Zhi-Hui, Wu Jun-Lin, Jiang Xin-Yu. Validation and analysis of gas-kinetic unified algorithm for solving Boltzmann model equation with vibrational energy excitation. Acta Physica Sinica, 2017, 66(20): 204703. doi: 10.7498/aps.66.204703
    [2] Zhao Guo-Zhong, Yu Xi-Jun. Runge-Kutta discontinuous Galerkin finite element method for two-dimensional gas dynamic equations in unified coordinate. Acta Physica Sinica, 2012, 61(11): 110208. doi: 10.7498/aps.61.110208
    [3] Su Jin, Ouyang Jie, Wang Xiao-Dong. Lattice Boltzmann method for an advective transport equation coupled with incompressible flow field. Acta Physica Sinica, 2012, 61(10): 104702. doi: 10.7498/aps.61.104702
    [4] Xie Jia-Fang, Pang Shuo, Zou Jie-Tao, Li Guo-Fu. The Borkhoffian expression of Boltzmann-Hamel equation of nonholonomic system and its generalized symplectic geometric algorithm. Acta Physica Sinica, 2012, 61(23): 230201. doi: 10.7498/aps.61.230201
    [5] Zheng Shi-Wang, Qiao Yong-Fen. Integrating factors and conservation theorems of Lagrange’s equations for generalized nonconservative systems in terms of quasi-coordinates. Acta Physica Sinica, 2006, 55(7): 3241-3245. doi: 10.7498/aps.55.3241
    [6] Xu Xue-Jun, Mei Feng-Xiang. Unified symmetry of the holonomic system in terms of quasi-coordinates. Acta Physica Sinica, 2005, 54(12): 5521-5524. doi: 10.7498/aps.54.5521
    [7] Li Hai-Jun, Gu Chang-Zhi, Dou Yan, Li Jun-Jie. Field emission from individual vertically carbon nanofibers. Acta Physica Sinica, 2004, 53(7): 2258-2262. doi: 10.7498/aps.53.2258
    [8] Qiao Yong-Fen, Zhao Shu-Hong, Li Ren-Jie. Non Noether conserved quantity of the holonomic mechanical systems in terms of quasi-coordinates ——An extension of Hojman theorem. Acta Physica Sinica, 2004, 53(7): 2035-2039. doi: 10.7498/aps.53.2035
    [9] Dong Quan-Lin, Liu Bin. . Acta Physica Sinica, 2002, 51(10): 2191-2196. doi: 10.7498/aps.51.2191
    [10] LI HUA-BING, HUANG PING-HUA, LIU MU-REN, KONG LING-JIANG. SIMULATION OF THE MKDV EQUATION WITH LATTICE BOLTZMANN METHOD. Acta Physica Sinica, 2001, 50(5): 837-840. doi: 10.7498/aps.50.837
    [11] Qiao Yong-Fen, Zhao Shu-Hong. . Acta Physica Sinica, 2001, 50(1): 1-7. doi: 10.7498/aps.50.1
    [12] LI ZHI-KUAN. QUASI-DIRAC EQUATION IN FREE-ELECTRON LASER. Acta Physica Sinica, 1997, 46(7): 1349-1353. doi: 10.7498/aps.46.1349
    [13] DING XIANG-MAO, WANG YAN-SHEN, HOU BO-YU. POISSON-LIE STRUCTURE OF LAX-PAIR MATRIX OF INTEGRABLE CLASSICAL NON-LINEAR SIGMA MODEL UNDER THE MOVING FRAME. Acta Physica Sinica, 1994, 43(1): 1-6. doi: 10.7498/aps.43.1
    [14] DING E-JIANG, HUANG ZU-QIA. ON THE SINGULAR PERTURBATION SOLUTION OF BOLTZMANN EQUATION (Ⅰ). Acta Physica Sinica, 1985, 34(1): 65-76. doi: 10.7498/aps.34.65
    [15] XU DIAN-YAN. CALCULATION OF RELATIVISTIC ENERGY LEVELS OF HYDROGEN ATOM BY SPINOR METHOD. Acta Physica Sinica, 1984, 33(1): 126-131. doi: 10.7498/aps.33.126
    [16] LI XIAN-SHU, GAO YAN-QIU, CHEN ZHI-TIAN, FENG ZENG-YE. A MATRIX THEORY FOR OPTICAL PASSIVE RESONATORS (IN CYLINDRICAL COORDINATES) (II)——CALCULATION FOR AXIAL SYMMETRIC STABLE RESONATORS. Acta Physica Sinica, 1983, 32(8): 1002-1016. doi: 10.7498/aps.32.1002
    [17] LI XIAN-SHU. A MATRIX THEORY FOR OPTICAL PASSIVE RESONATORS (IN CYLINDRICAL COORDINATES) (I)——MATRIX EQUATION OF THE SELF-CONSISTENT FIELD. Acta Physica Sinica, 1983, 32(8): 990-1001. doi: 10.7498/aps.32.990
    [18] LI XIAN-SHU. A MATRIX THEORY FOR THE PROPAGATION OF A SCALAR WAVE IN A SYSTEM CONSISTING OF PLANE SCREENS (IN CYLINDRICAL COORDINATES). Acta Physica Sinica, 1981, 30(10): 1325-1339. doi: 10.7498/aps.30.1325
    [19] PAN SHAO-HUA. THEORETICAL DESIGN OF AN OPTICAL COORDINATE TRANSFORM SYSTEM. Acta Physica Sinica, 1981, 30(4): 514-519. doi: 10.7498/aps.30.514
    [20] JIANG SHENG. REDUCED SPINOR FOR MALISM BY MEANS OF TETRAD CALCULUS WITH APPLICATION TO YANG'S GRAVITATIONAL FIELD EQUATIONS. Acta Physica Sinica, 1977, 26(3): 259-273. doi: 10.7498/aps.26.259
Metrics
  • Abstract views:  6635
  • PDF Downloads:  194
  • Cited By: 0
Publishing process
  • Received Date:  15 October 2017
  • Accepted Date:  17 December 2017
  • Published Online:  20 March 2019

/

返回文章
返回