[1] |
Zhang Fang, Zhang Yao-Yu, Xue Xi-Chang, Jia Li-Qun. Conformal invariance and conserved quantity of Mei symmetry for Appell equation in a holonomic system in relative motion. Acta Physica Sinica,
2015, 64(13): 134501.
doi: 10.7498/aps.64.134501
|
[2] |
Xu Chao, Li Yuan-Cheng. Lie-Mei symmetry and conserved quantities of Nielsen equations for a singular nonholonomic system of Chetaev'type. Acta Physica Sinica,
2013, 62(12): 120201.
doi: 10.7498/aps.62.120201
|
[3] |
Zheng Shi-Wang, Wang Jian-Bo, Chen Xiang-Wei, Li Yan-Min, Xie Jia-Fang. Lie symmetry and their conserved quantities of Tznoff equations for the vairable mass nonholonomic systems. Acta Physica Sinica,
2012, 61(11): 111101.
doi: 10.7498/aps.61.111101
|
[4] |
Zhang Bin, Fang Jian-Hui, Zhang Ke-Jun. Symmetry and conserved quantity of Lagrangians for nonholonomic variable mass system. Acta Physica Sinica,
2012, 61(2): 021101.
doi: 10.7498/aps.61.021101
|
[5] |
Zheng Shi-Wang, Xie Jia-Fang, Chen Xiang-Wei, Du Xue-Lian. Another kind of conserved quantity induced directly from Mei symmetry of Tzénoff equations for holonomic systems. Acta Physica Sinica,
2010, 59(8): 5209-5212.
doi: 10.7498/aps.59.5209
|
[6] |
Li Yuan-Cheng, Xia Li-Li, Wang Xiao-Ming, Liu Xiao-Wei. Lie-Mei symmetry and conserved quantities of Appell equation for a holonomic mechanical system. Acta Physica Sinica,
2010, 59(6): 3639-3642.
doi: 10.7498/aps.59.3639
|
[7] |
Li Yuan-Cheng, Wang Xiao-Ming, Xia Li-Li. Unified symmetry and conserved quantities of Nielsen equation for a holonomic mechanical system. Acta Physica Sinica,
2010, 59(5): 2935-2938.
doi: 10.7498/aps.59.2935
|
[8] |
Zhang Yi. Birkhoff symmetries and conserved quantities of generalized Birkhoffian systems. Acta Physica Sinica,
2009, 58(11): 7436-7439.
doi: 10.7498/aps.58.7436
|
[9] |
Cai Jian-Le. Conformal invariance and conserved quantities of Mei symmetry for general holonomic systems. Acta Physica Sinica,
2009, 58(1): 22-27.
doi: 10.7498/aps.58.22
|
[10] |
Li Yuan-Cheng, Xia Li-Li, Wang Xiao-Ming. Unified symmetry of mechanico-electrical systems with nonholonomic constraints of non-Chetaev’s type. Acta Physica Sinica,
2009, 58(10): 6732-6736.
doi: 10.7498/aps.58.6732
|
[11] |
Ge Wei-Kuan. Mei symmetry and conserved quantity of a holonomic system. Acta Physica Sinica,
2008, 57(11): 6714-6717.
doi: 10.7498/aps.57.6714
|
[12] |
Zheng Shi-Wang, Jia Li-Qun. Mei symmetry and conserved quantity of Tzénoff equations for nonholonomic systems. Acta Physica Sinica,
2007, 56(2): 661-665.
doi: 10.7498/aps.56.661
|
[13] |
Li Yuan-Cheng, Xia Li-Li, Zhao Wei, Hou Qi-Bao, Wang Jing, Jing Hong-Xing. Unified symmetry of mechanico-electrical systems. Acta Physica Sinica,
2007, 56(9): 5037-5040.
doi: 10.7498/aps.56.5037
|
[14] |
Ding Ning, Fang Jian-Hui, Zhang Peng-Yu, Wang Peng. Unified symmetry of Poincaré-Chetaev equations. Acta Physica Sinica,
2006, 55(12): 6197-6202.
doi: 10.7498/aps.55.6197
|
[15] |
Zheng Shi-Wang, Qiao Yong-Fen. Integrating factors and conservation theorems of Lagrange’s equations for generalized nonconservative systems in terms of quasi-coordinates. Acta Physica Sinica,
2006, 55(7): 3241-3245.
doi: 10.7498/aps.55.3241
|
[16] |
Xu Xue-Jun, Mei Feng-Xiang, Qin Mao-Chang. Hojman conserved quantity for a holonomic system in the event space. Acta Physica Sinica,
2005, 54(3): 1009-1014.
doi: 10.7498/aps.54.1009
|
[17] |
Qiao Yong-Fen, Zhao Shu-Hong, Li Ren-Jie. Non Noether conserved quantity of the holonomic mechanical systems in terms of quasi-coordinates ——An extension of Hojman theorem. Acta Physica Sinica,
2004, 53(7): 2035-2039.
doi: 10.7498/aps.53.2035
|
[18] |
Li Yuan-Cheng, Zhang Yi, Liang Jing-Hui. . Acta Physica Sinica,
2002, 51(10): 2186-2190.
doi: 10.7498/aps.51.2186
|
[19] |
Qiao Yong-Fen, Zhao Shu-Hong. . Acta Physica Sinica,
2001, 50(1): 1-7.
doi: 10.7498/aps.50.1
|
[20] |
MEI FENG-XIANG. LIE SYMMETRIES AND CONSERVED QUANTITIES OF NONHOLONOMIC SYSTEMS WITH SERVOCONSTR AINTS. Acta Physica Sinica,
2000, 49(7): 1207-1210.
doi: 10.7498/aps.49.1207
|