[1] |
Wang Xiu-Ming, Zhou Yin-Qiu. Research on elastodynamic theory based on the framework of energy conservation. Acta Physica Sinica,
2023, 72(7): 074501.
doi: 10.7498/aps.72.20212272
|
[2] |
Xu Chao, Li Yuan-Cheng. Lie-Mei symmetry and conserved quantities of Nielsen equations for a singular nonholonomic system of Chetaev'type. Acta Physica Sinica,
2013, 62(12): 120201.
doi: 10.7498/aps.62.120201
|
[3] |
Zheng Shi-Wang, Wang Jian-Bo, Chen Xiang-Wei, Li Yan-Min, Xie Jia-Fang. Lie symmetry and their conserved quantities of Tznoff equations for the vairable mass nonholonomic systems. Acta Physica Sinica,
2012, 61(11): 111101.
doi: 10.7498/aps.61.111101
|
[4] |
Zhang Bin, Fang Jian-Hui, Zhang Ke-Jun. Symmetry and conserved quantity of Lagrangians for nonholonomic variable mass system. Acta Physica Sinica,
2012, 61(2): 021101.
doi: 10.7498/aps.61.021101
|
[5] |
Zheng Shi-Wang, Xie Jia-Fang, Chen Xiang-Wei, Du Xue-Lian. Another kind of conserved quantity induced directly from Mei symmetry of Tzénoff equations for holonomic systems. Acta Physica Sinica,
2010, 59(8): 5209-5212.
doi: 10.7498/aps.59.5209
|
[6] |
Li Yuan-Cheng, Xia Li-Li, Wang Xiao-Ming, Liu Xiao-Wei. Lie-Mei symmetry and conserved quantities of Appell equation for a holonomic mechanical system. Acta Physica Sinica,
2010, 59(6): 3639-3642.
doi: 10.7498/aps.59.3639
|
[7] |
Li Yuan-Cheng, Wang Xiao-Ming, Xia Li-Li. Unified symmetry and conserved quantities of Nielsen equation for a holonomic mechanical system. Acta Physica Sinica,
2010, 59(5): 2935-2938.
doi: 10.7498/aps.59.2935
|
[8] |
Fang Jian-Hui. A kind of conserved quantity of Mei symmetry for Lagrange system. Acta Physica Sinica,
2009, 58(6): 3617-3619.
doi: 10.7498/aps.58.3617
|
[9] |
Zhang Yi, Ge Wei-Kuan. Lagrange symmetries and conserved quantities for nonholonomic systems of non-Chetaev’s type. Acta Physica Sinica,
2009, 58(11): 7447-7451.
doi: 10.7498/aps.58.7447
|
[10] |
Jia Li-Qun, Cui Jin-Chao, Zhang Yao-Yu, Luo Shao-Kai. Lie symmetry and conserved quantity of Appell equation for a Chetaev’s type constrained mechanical system. Acta Physica Sinica,
2009, 58(1): 16-21.
doi: 10.7498/aps.58.16
|
[11] |
Cai Jian-Le, Mei Feng-Xiang. Conformal invariance and conserved quantity of Lagrange systems under Lie point transformation. Acta Physica Sinica,
2008, 57(9): 5369-5373.
doi: 10.7498/aps.57.5369
|
[12] |
Zheng Shi-Wang, Jia Li-Qun. Mei symmetry and conserved quantity of Tzénoff equations for nonholonomic systems. Acta Physica Sinica,
2007, 56(2): 661-665.
doi: 10.7498/aps.56.661
|
[13] |
Qiao Yong-Fen, Zhao Shu-Hong, Li Ren-Jie. Existence theorem and its converse of conserved quantities for the nonholonomic nonconservative systems in the event space. Acta Physica Sinica,
2006, 55(11): 5585-5589.
doi: 10.7498/aps.55.5585
|
[14] |
Lou Zhi-Mei. Lagrangian function and conserved quantity of onedimensional relativistic harmonic oscillator containing a quadratic velocity drag force term. Acta Physica Sinica,
2005, 54(4): 1457-1459.
doi: 10.7498/aps.54.1457
|
[15] |
Xu Xue-Jun, Mei Feng-Xiang. Unified symmetry of the holonomic system in terms of quasi-coordinates. Acta Physica Sinica,
2005, 54(12): 5521-5524.
doi: 10.7498/aps.54.5521
|
[16] |
Qiao Yong-Fen, Zhao Shu-Hong, Li Ren-Jie. Non Noether conserved quantity of the holonomic mechanical systems in terms of quasi-coordinates ——An extension of Hojman theorem. Acta Physica Sinica,
2004, 53(7): 2035-2039.
doi: 10.7498/aps.53.2035
|
[17] |
Zhang Yi, Ge Wei-Kuan. Integrating factors and conservation laws for non-holonomic dynamical systems. Acta Physica Sinica,
2003, 52(10): 2363-2367.
doi: 10.7498/aps.52.2363
|
[18] |
Qiao Yong-Fen, Zhang Yao-Liang, Zhao Shu-Hong. . Acta Physica Sinica,
2002, 51(8): 1661-1665.
doi: 10.7498/aps.51.1661
|
[19] |
Qiao Yong-Fen, Zhao Shu-Hong. . Acta Physica Sinica,
2001, 50(1): 1-7.
doi: 10.7498/aps.50.1
|
[20] |
MEI FENG-XIANG, SHANG MEI. LIE SYMMETRIES AND CONSERVED QUANTITIES OF FIRST ORDER LAGRANGE SYSTEMS. Acta Physica Sinica,
2000, 49(10): 1901-1903.
doi: 10.7498/aps.49.1901
|