Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Structural broadband absorbing metamaterial based on three-dimensional printing technology

Xiong Yi-Jun Wang Yan Wang Qiang Wang Chun-Qi Huang Xiao-Zhong Zhang Fen Zhou Ding

Citation:

Structural broadband absorbing metamaterial based on three-dimensional printing technology

Xiong Yi-Jun, Wang Yan, Wang Qiang, Wang Chun-Qi, Huang Xiao-Zhong, Zhang Fen, Zhou Ding
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In order to verify the feasibility of three-dimensional (3D) printing technology in preparing the metamaterial absorbers with complex structure, a three-layer broadband absorbing metamaterial is designed and fabricated by 3D printing technology. The surface layer and middle layer of the metamaterial are composed of periodic arrays with different unit dimensions and the bottom layer of a slab structure. The optimized thickness of the metamaterial is 4.7 mm. A composite absorbent which consists of carbonyl iron powder and nylon is used to fabricate the absorber. In experiment, the obtained absorber is vertically irradiated by an electromagnetic (EM) wave. Two strong absorption peaks at 5.3 GHz and 14.1 GHz are achieved, with the reflection losses of -15.1 dB and -12.5 dB, respectively. The superposition of the two absorption peaks results in a reflection loss below -10 dB in a range from 4 to 18 GHz. The effective EM parameters of the surface layer and the middle layer are calculated by the S parameter inversion method. An effective model of the three-layer structure absorber is proposed and its reflectivity is calculated by using a multilayer structure reflectivity formula. The calculated reflectivity agrees well with the measured one. The absorbing and resonance mechanisms of the two absorption peaks are investigated by analyzing the dynamic distributions of power density loss, electric field and magnetic field. It can be clearly confirmed that the reflection losses at 5.3 GHz and 14.1 GHz are primarily concentrated on the bottom layer and surface layer, and the broadband absorption performance can be derived from the superposition of broadband absorptions of the three absorbing layers. Meanwhile, the strong electric coupling effect between the adjacent units in the surface layer is demonstrated by analyzing the electric-field distributions, which indicates that the strong reflection loss at 14.1 GHz is mainly caused by the electric response. The multiple scattering effects among the three layers are also considered according to the magnetic field distributions at two resonance frequencies. It is shown that there are two magnetic responses at 5.3 GHz and 14.1 GHz, respectively, and the multiple scattering contributes to increasing the EM wave propagation distance and enhancing the power loss. The designed absorbing metamaterials in this paper achieve good broadband absorption performances, particularly in the low frequency band. Combined with 3D printing rapid technology, a promising route to constructing 3D absorbing metamaterials with complex structures is proposed, which would be of great significance and broad practical prospect.
      Corresponding author: Wang Yan, wangyan@csu.edu.cn;huangxzh@csu.edu.cn ; Huang Xiao-Zhong, wangyan@csu.edu.cn;huangxzh@csu.edu.cn
    • Funds: Project supported by the Science and Technology Plan Project of Hunan Province, China (Grant No. 2015TP1007).
    [1]

    Hu C X 2004 Stealth Coating Technology (Beijing:Chemistry Industry Press) (in Chinese)[胡传炘 2004 隐身涂层技术 (北京:化学工业出版社)]

    [2]

    Yuan J, Xiao G, Cao M S 2006 Mater. Des. 27 45

    [3]

    Zhou L, Zhou W, Chen M, Luo F, Zhu D 2011 Mater. Sci. Eng. B 176 1456

    [4]

    Kumar T A, Inayathullah J, Nagarajan V A, Kumar S H 2016 Bull. Mater. Sci. 39 279

    [5]

    Choi I, Jin G K, Seo I S, Dai G L 2012 Compos. Struct. 94 3002

    [6]

    Feng J, Zhang Y, Wang P, Fan H 2016 Compos. Part B:Eng. 99 465

    [7]

    Bollen P, Quievy N, Detrtembleur C, Thomassin J M, Monnereau L, Bailly C, Huynen I, Pardoen T 2016 Mater. Des. 89 323

    [8]

    Hosseini S H, Alamian A, Mousavi S M 2016 Fibers Polym. 17 593

    [9]

    He P, Hou Z L, Zhang K L, Li J, Yin K, Feng S, Bi S 2017 J. Mater. Sci. 52 8258

    [10]

    Rozanov K N 2000 IEEE Trans. Antennas Propag. 48 1230

    [11]

    Song W L, Zhang K L, Chen M J, Hou Z L, Chen H S, Yuan X J, Ma Y B, Fang D N 2017 Carbon 118 86

    [12]

    Zhou Q, Yin X W, Ye F, Liu X F, Cheng L F, Zhang L T 2017 Mater. Des. 123 46

    [13]

    Yao B, Xia S X, Ou X H, Cheng C G 2016 Fiber Reinforced Plastics Composites 4 26 (in Chinese)[姚斌, 夏少旭, 欧湘慧, 程朝歌 2016 玻璃钢复合材料 4 26]

    [14]

    Wang H, Kong P, Cheng W T, Bao W Z, Yu X W, Miao L, Jiang J J 2016 Sci. Rep. 6 23081

    [15]

    Xu W H, He Y, Kong P, Li J L, Xu H B, Miao L, Bie S W, Jiang J J 2015 J. Appl. Phys. 118 1443

    [16]

    Bhattacharyya S, Srivastava K V 2014 J. Appl. Phys. 115 4184

    [17]

    Cheng Y Z, Nie Y, Wang X, Gong R Z 2014 J. Appl. Phys. 115 207492

    [18]

    Wang Q, Tang X Z, Zhou D, Du Z J, Huang X Z 2017 IEEE Antennas Wirel. Propag. Lett. 16 3200

    [19]

    D'Aloia A G, D'Amore M, Sarto M S 2016 IEEE Trans. Antennas Propag. 64 2527

    [20]

    Costa F, Monorchio A, Manara G 2010 IEEE Trans. Antennas Propag. 58 1551

    [21]

    Huang L, Chen H 2011 OALib Journal 113 103

    [22]

    Zhang S, Zhou J F, Park Y S, Rho J, Singh R, Nam S, Azad A K, Chen H T, Yin X, Taylor A J, Zhang X 2012 Nat. Commun. 3 942

    [23]

    Zhu W M, Liu A Q, Zhang X M, Tsai D P, Bourouina T, Teng J H, Zhang X H, Guo H C, Tanoto H, Mei T, Lo G Q, Kwong D L 2011 Adv. Mater. 23 1792

    [24]

    Xiong H 2014 Ph. D. Dissertation (Chengdu:University of Electronic Science and Technology of China) (in Chinese)[熊汉 2014博士学位论文 (成都:电子科技大学)]

    [25]

    Zhao Y C, Wan G B 2013 Chin. J. Radio. 28 2 (in Chinese)[赵雨辰,万国宾 2013 电波科学学报 28 2]

    [26]

    Smith D R, Vier D C, Koschny T, Soukoulis C M 2005 Phys. Rev. E 71 036617

    [27]

    Hickey M C, Akyurtlu A, Kussow A G 2010 Phys. Rev. A 82 11992

    [28]

    Leon L S 2014 Encyclopedia of Thermal Stresses (Netherlands:Springer) p5267

    [29]

    Pan Y F 2005 M. S. Dissertation (Nanjing:Nanjing University of Aeronautics and Astronautics) (in Chinese)[潘琰峰 2005 硕士学位论文 (南京:南京航空航天大学)]

    [30]

    Li W, Wu T L, Wang W, Zhai P C, Guan J G 2014 J. Appl. Phys. 104 1189

    [31]

    Zhou Q, Yin X W, Ye F, Liu X F, Cheng L F, Zhang L T 2017 Mater. Des. 123 46

  • [1]

    Hu C X 2004 Stealth Coating Technology (Beijing:Chemistry Industry Press) (in Chinese)[胡传炘 2004 隐身涂层技术 (北京:化学工业出版社)]

    [2]

    Yuan J, Xiao G, Cao M S 2006 Mater. Des. 27 45

    [3]

    Zhou L, Zhou W, Chen M, Luo F, Zhu D 2011 Mater. Sci. Eng. B 176 1456

    [4]

    Kumar T A, Inayathullah J, Nagarajan V A, Kumar S H 2016 Bull. Mater. Sci. 39 279

    [5]

    Choi I, Jin G K, Seo I S, Dai G L 2012 Compos. Struct. 94 3002

    [6]

    Feng J, Zhang Y, Wang P, Fan H 2016 Compos. Part B:Eng. 99 465

    [7]

    Bollen P, Quievy N, Detrtembleur C, Thomassin J M, Monnereau L, Bailly C, Huynen I, Pardoen T 2016 Mater. Des. 89 323

    [8]

    Hosseini S H, Alamian A, Mousavi S M 2016 Fibers Polym. 17 593

    [9]

    He P, Hou Z L, Zhang K L, Li J, Yin K, Feng S, Bi S 2017 J. Mater. Sci. 52 8258

    [10]

    Rozanov K N 2000 IEEE Trans. Antennas Propag. 48 1230

    [11]

    Song W L, Zhang K L, Chen M J, Hou Z L, Chen H S, Yuan X J, Ma Y B, Fang D N 2017 Carbon 118 86

    [12]

    Zhou Q, Yin X W, Ye F, Liu X F, Cheng L F, Zhang L T 2017 Mater. Des. 123 46

    [13]

    Yao B, Xia S X, Ou X H, Cheng C G 2016 Fiber Reinforced Plastics Composites 4 26 (in Chinese)[姚斌, 夏少旭, 欧湘慧, 程朝歌 2016 玻璃钢复合材料 4 26]

    [14]

    Wang H, Kong P, Cheng W T, Bao W Z, Yu X W, Miao L, Jiang J J 2016 Sci. Rep. 6 23081

    [15]

    Xu W H, He Y, Kong P, Li J L, Xu H B, Miao L, Bie S W, Jiang J J 2015 J. Appl. Phys. 118 1443

    [16]

    Bhattacharyya S, Srivastava K V 2014 J. Appl. Phys. 115 4184

    [17]

    Cheng Y Z, Nie Y, Wang X, Gong R Z 2014 J. Appl. Phys. 115 207492

    [18]

    Wang Q, Tang X Z, Zhou D, Du Z J, Huang X Z 2017 IEEE Antennas Wirel. Propag. Lett. 16 3200

    [19]

    D'Aloia A G, D'Amore M, Sarto M S 2016 IEEE Trans. Antennas Propag. 64 2527

    [20]

    Costa F, Monorchio A, Manara G 2010 IEEE Trans. Antennas Propag. 58 1551

    [21]

    Huang L, Chen H 2011 OALib Journal 113 103

    [22]

    Zhang S, Zhou J F, Park Y S, Rho J, Singh R, Nam S, Azad A K, Chen H T, Yin X, Taylor A J, Zhang X 2012 Nat. Commun. 3 942

    [23]

    Zhu W M, Liu A Q, Zhang X M, Tsai D P, Bourouina T, Teng J H, Zhang X H, Guo H C, Tanoto H, Mei T, Lo G Q, Kwong D L 2011 Adv. Mater. 23 1792

    [24]

    Xiong H 2014 Ph. D. Dissertation (Chengdu:University of Electronic Science and Technology of China) (in Chinese)[熊汉 2014博士学位论文 (成都:电子科技大学)]

    [25]

    Zhao Y C, Wan G B 2013 Chin. J. Radio. 28 2 (in Chinese)[赵雨辰,万国宾 2013 电波科学学报 28 2]

    [26]

    Smith D R, Vier D C, Koschny T, Soukoulis C M 2005 Phys. Rev. E 71 036617

    [27]

    Hickey M C, Akyurtlu A, Kussow A G 2010 Phys. Rev. A 82 11992

    [28]

    Leon L S 2014 Encyclopedia of Thermal Stresses (Netherlands:Springer) p5267

    [29]

    Pan Y F 2005 M. S. Dissertation (Nanjing:Nanjing University of Aeronautics and Astronautics) (in Chinese)[潘琰峰 2005 硕士学位论文 (南京:南京航空航天大学)]

    [30]

    Li W, Wu T L, Wang W, Zhai P C, Guan J G 2014 J. Appl. Phys. 104 1189

    [31]

    Zhou Q, Yin X W, Ye F, Liu X F, Cheng L F, Zhang L T 2017 Mater. Des. 123 46

  • [1] Wang Xin, Wang Jun-Lin. Refractive index sensing characteristics of electromagnetic metamaterial absorber in terahertz band. Acta Physica Sinica, 2021, 70(3): 038102. doi: 10.7498/aps.70.20201054
    [2] Wang Yan-Zhao, Xu He-Xiu, Wang Chao-Hui, Wang Ming-Zhao, Wang Shao-Jie. Research progress of electromagnetic metamaterial absorbers. Acta Physica Sinica, 2020, 69(13): 134101. doi: 10.7498/aps.69.20200355
    [3] Chen Jun, Yang Mao-Sheng, Li Ya-Di, Cheng Deng-Ke, Guo Geng-Liang, Jiang Lin, Zhang Hai-Ting, Song Xiao-Xian, Ye Yun-Xia, Ren Yun-Peng, Ren Xu-Dong, Zhang Ya-Ting, Yao Jian-Quan. Tunable terahertz wave broadband absorber based on metamaterial. Acta Physica Sinica, 2019, 68(24): 247802. doi: 10.7498/aps.68.20191216
    [4] Mo Man-Man, Ma Wu-Wei, Pang Yong-Qiang, Chen Run-Hua, Zhang Xiao-Mei, Liu Zhao-Tang, Li Xiang, Guo Wan-Tao. Broadband absorbent materials based on topology optimization design. Acta Physica Sinica, 2018, 67(21): 217801. doi: 10.7498/aps.67.20181170
    [5] Xu Yong-Shun, Bie Shao-Wei, Jiang Jian-Jun, Xu Hai-Bing, Wan Dong, Zhou Jie. Composite absorber of broadband and high attenuation with spiral frequency selective surfaces. Acta Physica Sinica, 2014, 63(20): 205202. doi: 10.7498/aps.63.205202
    [6] Lu Lei, Qu Shao-Bo, Shi Hong-Yu, Zhang An-Xue, Xia Song, Xu Zhuo, Zhang Jie-Qiu. A broadband transmission absorption polarization-independent metamaterial absorber. Acta Physica Sinica, 2014, 63(2): 028103. doi: 10.7498/aps.63.028103
    [7] Cheng Yong-Zhi, Nie Yan, Gong Rong-Zhou, Wang Xian. Design of an ultrathin and wideband metamaterial absorber based on resistance film and fractal frequency selective surface. Acta Physica Sinica, 2013, 62(4): 044103. doi: 10.7498/aps.62.044103
    [8] Lu Lei, Qu Shao-Bo, Ma Hua, Yu Fei, Xia Song, Xu Zhuo, Bai Peng. A polarization-independent transmission absorption metamaterial absorber based on electromagnetic resonance. Acta Physica Sinica, 2013, 62(10): 104102. doi: 10.7498/aps.62.104102
    [9] Lu Lei, Qu Shao-Bo, Xia Song, Xu Zhuo, Ma Hua, Wang Jia-Fu, Yu Fei. Simulation and experiment demonstration of a polarization-independent dual-directional absorption metamaterial absorber. Acta Physica Sinica, 2013, 62(1): 013701. doi: 10.7498/aps.62.013701
    [10] Liu Ya-Hong, Fang Shi-Lei, Gu Shuai, Zhao Xiao-Peng. Multiband and broadband metamterial absorbers. Acta Physica Sinica, 2013, 62(13): 134102. doi: 10.7498/aps.62.134102
    [11] Cheng Yong-Zhi, Nie Yan, Gong Rong-Zhou, Zheng Dong-Hao, Fan Yue-Nong, Xiong Xuan, Wang Xian. Design of a thin wide-band absorber based on metamaterials and resistance frequency selective surface. Acta Physica Sinica, 2012, 61(13): 134101. doi: 10.7498/aps.61.134101
    [12] Lin Guo-Chang, Sun Hong-Wei, Tan Hui-Feng, Du Xing-Wen. Simulation of a metamaterial beam for mechanical wave absorption. Acta Physica Sinica, 2011, 60(3): 034302. doi: 10.7498/aps.60.034302
    [13] Sun Liang-Kui, Cheng Hai-Feng, Zhou Yong-Jiang, Wang Jun, Pang Yong-Qiang. Design and preparation of a radar-absorbing material based on metamaterial. Acta Physica Sinica, 2011, 60(10): 108901. doi: 10.7498/aps.60.108901
    [14] Gu Chao, Qu Shao-Bo, Pei Zhi-Bin, Xu Zhuo, Ma Hua, Lin Bao-Qin, Bai Peng, Peng Wei-Dong. A polarization-insensitive and double-face-absorption chiral metamaterial absorber. Acta Physica Sinica, 2011, 60(10): 107801. doi: 10.7498/aps.60.107801
    [15] Gu Chao, Qu Shao-Bo, Pei zhi-Bin, Gu Wei, Liu Jia, Xu Zhuo. The design of a quasi-omnidirectional tabulate metamaterial absorber. Acta Physica Sinica, 2011, 60(3): 037801. doi: 10.7498/aps.60.037801
    [16] Shuai Wen-Juan, Feng Shao-Tong, Nie Shou-Ping, Zhu Zhu-Qing. Sequence images hiding technique of three-dimensional object based on principal component analysis in wavelet domain. Acta Physica Sinica, 2011, 60(3): 034203. doi: 10.7498/aps.60.034203
    [17] Gu Chao, Qu Shao-Bo, Pei Zhi-Bin, Xu Zhuo, Bai Peng, Peng Wei-Dong, Lin Bao-Qin. Design of a wide-band metamaterial absorber based on loaded magnetic resonators. Acta Physica Sinica, 2011, 60(8): 087801. doi: 10.7498/aps.60.087801
    [18] Gu Chao, Qu Shao-Bo, Pei Zhi-Bin, Xu Zhuo, Lin Bao-Qin, Zhou Hang, Bai Peng, Gu Wei, Peng Wei-Dong, Ma Hua. Design of a wide-band metamaterial absorber based on resistance films. Acta Physica Sinica, 2011, 60(8): 087802. doi: 10.7498/aps.60.087802
    [19] Zhang Xi-Ren, Li Bin-Cheng, Liu Xian-Ming. Measurement of electronic transport property of semiconductors by three-dimensional modulated free carrier absorption technique. Acta Physica Sinica, 2008, 57(11): 7310-7316. doi: 10.7498/aps.57.7310
    [20] Wang Shao-Hong, B.Ferguson, Zhang Cun-Lin, Zhang Xi-Cheng. Terahertz computer tomography. Acta Physica Sinica, 2003, 52(1): 120-124. doi: 10.7498/aps.52.120
Metrics
  • Abstract views:  10131
  • PDF Downloads:  586
  • Cited By: 0
Publishing process
  • Received Date:  19 October 2017
  • Accepted Date:  29 December 2017
  • Published Online:  20 April 2019

/

返回文章
返回