Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Broadband absorbent materials based on topology optimization design

Mo Man-Man Ma Wu-Wei Pang Yong-Qiang Chen Run-Hua Zhang Xiao-Mei Liu Zhao-Tang Li Xiang Guo Wan-Tao

Citation:

Broadband absorbent materials based on topology optimization design

Mo Man-Man, Ma Wu-Wei, Pang Yong-Qiang, Chen Run-Hua, Zhang Xiao-Mei, Liu Zhao-Tang, Li Xiang, Guo Wan-Tao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this paper, we present a kind of broadband absorbent material. The broadband absorbent material is designed based on topology optimization and tested. The optimizing of metamaterials with a genetic algorithm has become one of the most effective methods of designing metamaterials in recent years. An integral system with interactive simulation of MATLAB and CST Microwave Studio is developed, and the main program of genetic algorithm is written in MATLAB; with simulation and computation in CST the metamaterial is optimized by a genetic algorithm with power of global optimization. Vacuum assistant resin infusion process is a new cost-effective and high-performance process. The proposed radar absorbent material possesses a sandwich structure, which consists of transparent composite skin panel, resistive metasurface, polyurethane foam and reflective composite skin panel. The transparent composite skin panel is low-dielectric-constant glass fiber reinforced composite, which has excellent physical properties and weather resistant property. The core material is composed of low density polyurethane foam and metamaterials, which can well meet the requirements for weight reduction and the invisibility. The reflective composite skin panel is a low-resistance carbon fiber reinforced composite, which prevents the electromagnetic waves from transmitting and also provides electrical boundary conditions for metamaterial. Simulation and test results indicate that the reflectivity of the radar absorbent material is less than-12 dB in a range of 2-18 GHz. Because of the symmetrical structure design of the resistance film, the radar absorbent material is polarization-independent. We preliminarily produce a batch of radar absorbent materials and test their various performances. Such a radar absorbent material has a strong absorption and other properties such as light quality, high temperature resistance, low temperature resistance, humidity resistance and corrosion resistance. The radar absorbent material which has been widely used in the engineering field is easy to achieve the compatibility of absorption, mechanical properties and environmental performance. Compared with previous design method, the topology optimization design is simple in programming operation, good in generality, and short in design periode. The radar absorbent materials owns strong application value.
      Corresponding author: Mo Man-Man, mmm725@126.com
    [1]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [2]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780

    [3]

    Schurig D, Mock J J, Justice B J 2006 Science 314 977

    [4]

    Yan H H, Cao X Y, Gao J, Liu T, Li S J, Zhao Y, Yuan Z D, Zhang H 2013 Acta Phys. Sin. 62 214101 (in Chinese)[杨欢欢, 曹祥玉, 高军, 刘涛, 李思佳, 赵一, 袁子东, 张浩 2013 物理学报 62 214101]

    [5]

    Zhang L, Liu S, Cui T J 2017 Chin. Opt. 10 1 (in Chinese)[张磊, 刘硕, 崔铁军 2017 中国光学 10 1]

    [6]

    Yan X, Liang L J, Yang J, Liu W W, Ding X, Xu D G, Zhang Y T, Cui T J, Yao J Q 2015 Opt. Express 23 29128

    [7]

    Liu J F, Liu S, Fu X J, Cui T J 2018 J. Radars 7 46 (in Chinese)[刘峻峰, 刘硕, 傅晓建, 崔铁军 2018 雷达学报 7 46]

    [8]

    Zhang C, Cheng Q, Yang J, Zhao J, Cui T J 2017 Appl. Phys. Lett. 110 143511

    [9]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Chen H Y, Xu Z, Zhang A X 2014 Appl. Phys. Lett. 104 221110

    [10]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Chen H Y, Xu Z, Zhang A X 2014 Acta Phys. Sin. 63 084103 (in Chinese)[李勇峰, 张介秋, 屈绍波, 王甲富, 陈红雅, 徐卓, 张安学 2014 物理学报 63 084103]

    [11]

    Li Y F, Wang J F, Zhang J Q, Qu S B, Pang Y Q, Zheng L, Yan M B, Xu Z, Zhang A X 2014 Prog. Electromagn. Res. M 40 9

    [12]

    Zhu B, Wang Z B, Yu Z Z, Zhang Q, Zhao J M, Feng Y J, Jing T 2009 Chin. Phys. Lett. 26 114102

    [13]

    Pan W B, Huang C, Chen P, Ma X L, Hu C G, Luo X G 2014 IEEE Trans. Antennas Propag. 62 945

    [14]

    Wen Q Y, Zhang H W, Xie Y S, Yang Q H, Liu Y L 2009 Appl. Phys. Lett. 95 241111

    [15]

    Chen H Y, Hou X Y, Deng L J 2009 IEEE Antennas Wirel. Propag. Lett. 8 1231

    [16]

    Xu Y Q, Zhou P H, Zhang H B, Chen L, Deng L J 2011 J. Appl. Phys. 110 044102

    [17]

    Zhang L B, Zhou P H, Chen H Y, Lu H P, Xie H Y, Zhang L, Li E, Xie J L, Deng L J 2016 Sci. Rep. 6 33826

    [18]

    Cui Y X, Feng K H, Xu J, Ma H J, Jin Y, He S L, Fang N X 2012 Nano Lett. 12 1443

    [19]

    Cui Y X, He Y R, Jin Y, Ding F, Yang L, Ye Y Q, Zhong S M, Lin Y Y, He S L 2014 Laser Photon. Rev. 8 495

    [20]

    Zhong S M, He S L 2013 Sci. Rep. 3 2083

    [21]

    Zhong S M, Ma Y G, He S L 2014 Appl. Phys. Lett. 105 023504

    [22]

    Zhu J F, Ma Z F, Sun W J, Ding F, He Q, Zhou L, Ma Y G 2014 Appl. Phys. Lett. 105 021102

    [23]

    Ding F, Jin Y, Li B R, Cheng H, Mo L, He S L 2014 Laser Photonics Rev. 8 946

    [24]

    Cheng Y Z, Nie Y, Gong R Z, Zheng D H, Fan Y N, Xiong X, Wang X 2012 Acta Phys. Sin. 61 134101 (in Chinese)[程用志, 聂彦, 龚荣洲, 郑栋浩, 范跃农, 熊炫, 王鲜 2012 物理学报 61 134101]

    [25]

    Cheng Y Z, Wang Y, Nie Y, Zheng D H, Gong R Z, Xiong X, Wang X 2012 Acta Phys. Sin. 61 134102 (in Chinese)[程用志, 王莹, 聂彦, 郑栋浩, 龚荣洲, 熊炫, 王鲜 2012 物理学报 61 134102]

  • [1]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [2]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780

    [3]

    Schurig D, Mock J J, Justice B J 2006 Science 314 977

    [4]

    Yan H H, Cao X Y, Gao J, Liu T, Li S J, Zhao Y, Yuan Z D, Zhang H 2013 Acta Phys. Sin. 62 214101 (in Chinese)[杨欢欢, 曹祥玉, 高军, 刘涛, 李思佳, 赵一, 袁子东, 张浩 2013 物理学报 62 214101]

    [5]

    Zhang L, Liu S, Cui T J 2017 Chin. Opt. 10 1 (in Chinese)[张磊, 刘硕, 崔铁军 2017 中国光学 10 1]

    [6]

    Yan X, Liang L J, Yang J, Liu W W, Ding X, Xu D G, Zhang Y T, Cui T J, Yao J Q 2015 Opt. Express 23 29128

    [7]

    Liu J F, Liu S, Fu X J, Cui T J 2018 J. Radars 7 46 (in Chinese)[刘峻峰, 刘硕, 傅晓建, 崔铁军 2018 雷达学报 7 46]

    [8]

    Zhang C, Cheng Q, Yang J, Zhao J, Cui T J 2017 Appl. Phys. Lett. 110 143511

    [9]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Chen H Y, Xu Z, Zhang A X 2014 Appl. Phys. Lett. 104 221110

    [10]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Chen H Y, Xu Z, Zhang A X 2014 Acta Phys. Sin. 63 084103 (in Chinese)[李勇峰, 张介秋, 屈绍波, 王甲富, 陈红雅, 徐卓, 张安学 2014 物理学报 63 084103]

    [11]

    Li Y F, Wang J F, Zhang J Q, Qu S B, Pang Y Q, Zheng L, Yan M B, Xu Z, Zhang A X 2014 Prog. Electromagn. Res. M 40 9

    [12]

    Zhu B, Wang Z B, Yu Z Z, Zhang Q, Zhao J M, Feng Y J, Jing T 2009 Chin. Phys. Lett. 26 114102

    [13]

    Pan W B, Huang C, Chen P, Ma X L, Hu C G, Luo X G 2014 IEEE Trans. Antennas Propag. 62 945

    [14]

    Wen Q Y, Zhang H W, Xie Y S, Yang Q H, Liu Y L 2009 Appl. Phys. Lett. 95 241111

    [15]

    Chen H Y, Hou X Y, Deng L J 2009 IEEE Antennas Wirel. Propag. Lett. 8 1231

    [16]

    Xu Y Q, Zhou P H, Zhang H B, Chen L, Deng L J 2011 J. Appl. Phys. 110 044102

    [17]

    Zhang L B, Zhou P H, Chen H Y, Lu H P, Xie H Y, Zhang L, Li E, Xie J L, Deng L J 2016 Sci. Rep. 6 33826

    [18]

    Cui Y X, Feng K H, Xu J, Ma H J, Jin Y, He S L, Fang N X 2012 Nano Lett. 12 1443

    [19]

    Cui Y X, He Y R, Jin Y, Ding F, Yang L, Ye Y Q, Zhong S M, Lin Y Y, He S L 2014 Laser Photon. Rev. 8 495

    [20]

    Zhong S M, He S L 2013 Sci. Rep. 3 2083

    [21]

    Zhong S M, Ma Y G, He S L 2014 Appl. Phys. Lett. 105 023504

    [22]

    Zhu J F, Ma Z F, Sun W J, Ding F, He Q, Zhou L, Ma Y G 2014 Appl. Phys. Lett. 105 021102

    [23]

    Ding F, Jin Y, Li B R, Cheng H, Mo L, He S L 2014 Laser Photonics Rev. 8 946

    [24]

    Cheng Y Z, Nie Y, Gong R Z, Zheng D H, Fan Y N, Xiong X, Wang X 2012 Acta Phys. Sin. 61 134101 (in Chinese)[程用志, 聂彦, 龚荣洲, 郑栋浩, 范跃农, 熊炫, 王鲜 2012 物理学报 61 134101]

    [25]

    Cheng Y Z, Wang Y, Nie Y, Zheng D H, Gong R Z, Xiong X, Wang X 2012 Acta Phys. Sin. 61 134102 (in Chinese)[程用志, 王莹, 聂彦, 郑栋浩, 龚荣洲, 熊炫, 王鲜 2012 物理学报 61 134102]

  • [1] Han Tong-Wei, Li Xuan-Zheng, Zhao Ze-Ruo, Gu Ye-Tong, Ma Chuan, Zhang Xiao-Yan. Mechanical properties and deformation mechanisms of two-dimensional borophene under different loadings. Acta Physica Sinica, 2024, 73(11): 116201. doi: 10.7498/aps.73.20240066
    [2] He Xiao-Xun, Li Bing-Sheng, Liu Rui, Zhang Tong-Min, Cao Xing-Zhong, Chen Li-Ming, Xu Shuai. Effect of Ti content on preparation and properties of TiB2-SiC-Ti materials. Acta Physica Sinica, 2022, 71(19): 192801. doi: 10.7498/aps.71.20220530
    [3] Chen Jing-Jing, Qiu Xiao-Lin, Li Ke, Zhou Dan, Yuan Jun-Jun. Mechanical performance analysis of nanocrystalline CoNiCrFeMn high entropy alloy: atomic simulation method. Acta Physica Sinica, 2022, 71(19): 199601. doi: 10.7498/aps.71.20220733
    [4] Xin Yong, Bao Hong-Wei, Sun Zhi-Peng, Zhang Ji-Bin, Liu Shi-Chao, Guo Zi-Xuan, Wang Hao-Yu, Ma Fei, Li Yuan-Ming. Effects of Th doping on mechanical properties of U1–xThxO2: An atomistic simulation. Acta Physica Sinica, 2021, 70(12): 122801. doi: 10.7498/aps.70.20202239
    [5] Li Xing-Xin, Li Si-Ping. Manipulations on mechanical properties of multilayer folded graphene by annealing temperature: a molecular dynamics simulation study. Acta Physica Sinica, 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [6] Qiu Ke-Peng, Luo Yue, Zhang Wei-Hong. Analysis and design of new chiral metamaterials with asymmetric transmission characteristics. Acta Physica Sinica, 2020, 69(21): 214101. doi: 10.7498/aps.69.20200728
    [7] Li Jie-Jie, Lu Bin-Bin, Xian Yue-Hui, Hu Guo-Ming, Xia Re. Characterization of nanoporous silver mechanical properties by molecular dynamics simulation. Acta Physica Sinica, 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [8] Chen Zhi-Peng, Ma Ya-Nan, Lin Xue-Ling, Pan Feng-Chun, Xi Li-Ying, Ma Zhi, Zheng Fu, Wang Yan-Qing, Chen Huan-Ming. Electronic structure and mechanical properties of Nb-doped -TiAl intermetallic compound. Acta Physica Sinica, 2017, 66(19): 196101. doi: 10.7498/aps.66.196101
    [9] Wang Hai-Yan, Hu Qian-Ku, Yang Wen-Peng, Li Xu-Sheng. Influence of metal element doping on the mechanical properties of TiAl alloy. Acta Physica Sinica, 2016, 65(7): 077101. doi: 10.7498/aps.65.077101
    [10] Li Li-Li, Zhang Xiao-Hong, Wang Yu-Long, Guo Jia-Hui, Zhang Shuang. Simulation of mechanical properties based on microstructure in polyethylene/montmorillonite nanocomposites. Acta Physica Sinica, 2016, 65(19): 196202. doi: 10.7498/aps.65.196202
    [11] Ma Bing-Yang, Zhang An-Ming, Shang Hai-Long, Sun Shi-Yang, Li Ge-Yang. Amorphizing and mechanical properties of co-sputtered Al-Zr alloy films. Acta Physica Sinica, 2014, 63(13): 136801. doi: 10.7498/aps.63.136801
    [12] Chen Ming-Dong, Jie Xiao-Hua, Zhang Hai-Yan. Simulation and calculation of the absorbing microwave properties of carbon nanotube composite coating. Acta Physica Sinica, 2014, 63(6): 066103. doi: 10.7498/aps.63.066103
    [13] Yang Duo, Zhong Ning, Shang Hai-Long, Sun Shi-Yang, Li Ge-Yang. Microstructures and mechanical properties of (Ti, N)/Al nanocomposite films by magnetron sputtering. Acta Physica Sinica, 2013, 62(3): 036801. doi: 10.7498/aps.62.036801
    [14] Yu Li-Hua, Ma Bing-Yang, Cao Jun, Xu Jun-Hua. Structures, mechanical and tribological properties of (Zr,V)N composite films. Acta Physica Sinica, 2013, 62(7): 076202. doi: 10.7498/aps.62.076202
    [15] Luo Qing-Hong, Lu Yong-Hao, Lou Yan-Zhi. Microstructure and mechanical properties of Ti-B-C-N nanocomposite coatings. Acta Physica Sinica, 2011, 60(8): 086802. doi: 10.7498/aps.60.086802
    [16] Luo Qing-Hong, Lou Yan-Zhi, Zhao Zhen-Ye, Yang Hui-Sheng. Effect of annealing on microstructure and mechanical propertiesof AlTiN multilayer coatings. Acta Physica Sinica, 2011, 60(6): 066201. doi: 10.7498/aps.60.066201
    [17] Yu Wei-Yang, Tang Bi-Yu, Peng Li-Ming, Ding Wen-Jiang. Electronic structure and mechanical properties of α-Mg3Sb2. Acta Physica Sinica, 2009, 58(13): 216-S223. doi: 10.7498/aps.58.216
    [18] Hua Shao-Chun, Wang Han-Gong, Wang Liu-Ying, Liu Gu, Zhao Rui-Xing, Yao Jian-Xun. Absorption properties of micro-plasma sprayed carbon nanotube-nanostructure Al2O3-TiO2 composite coatings. Acta Physica Sinica, 2009, 58(9): 6534-6541. doi: 10.7498/aps.58.6534
    [19] Zhai Qiu-Ya, Yang Yang, Xu Jin-Feng, Guo Xue-Feng. Electrical resistivity and mechanical properties of rapidly solidified Cu-Sn hypoperitectic alloys. Acta Physica Sinica, 2007, 56(10): 6118-6123. doi: 10.7498/aps.56.6118
    [20] Wei Lun, Mei Fang-Hua, Shao Nan, Dong Yun-Shan, Li Ge-Yang. The coherent growth and mechanical properties of non-isostructural TiN/TiB2 nanomultilayers. Acta Physica Sinica, 2005, 54(10): 4846-4851. doi: 10.7498/aps.54.4846
Metrics
  • Abstract views:  8177
  • PDF Downloads:  255
  • Cited By: 0
Publishing process
  • Received Date:  14 June 2018
  • Accepted Date:  28 August 2018
  • Published Online:  05 November 2018

/

返回文章
返回