Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Analysis and design of new chiral metamaterials with asymmetric transmission characteristics

Qiu Ke-Peng Luo Yue Zhang Wei-Hong

Citation:

Analysis and design of new chiral metamaterials with asymmetric transmission characteristics

Qiu Ke-Peng, Luo Yue, Zhang Wei-Hong
PDF
HTML
Get Citation
  • Asymmetric transmission (AT) metamaterials are extensively studied and applied in the fields of polarization converters and photodiodes. In order to further improve the properties of polarization conversion and unidirectional conduction in the high frequency band and to implement their tunability, the novel chiral electromagnetic metamaterials are studied. By the topology optimization technique, a new type of double-layer L-shaped variant metamaterial structure with excellent asymmetric transmission characteristics is designed. The objective function is to maximize the asymmetric transmission coefficient for the linear polarization wave. The rotationally symmetrical design domain is determined by considering polarization conversion and computation efficiency simultaneously. The design domain of upper layer is divided into two parts which are both the 180° rotationally symmetrical. The design domain of the upper layer and lower layer are the 90° rotationally symmetrical around the x and z axis respectively. Therefore, the number of design variables is only 18. Asymmetric transmission of linear polarization wave in the K band and Ka band are implemented. Numerical simulation results and experimental results show that the optimized chiral metamaterial has excellent asymmetric transmission characteristics, and its asymmetric transmission coefficient reaches 0.8562 at a frequency of 21.65 GHz and 0.8175 at a frequency of 28.575 GHz. Its asymmetric transmission mechanism is expounded by analyzing the electric field and surface current distribution at the resonance frequency. Based on the optimized chiral metamatertials, the reasonable geometric parameters are selected and the rotation angle of the metal layer is changed in order to further achieve the tunable AT characteristics. First, the influences of the dielectric substrate layer, the thickness of the metal layer and the side length of the grid on resonance frequency and asymmetric transmission coefficient are analyzed respectively, which provides the basis for the reasonable adjustment of the structural parameters to obtain better asymmetric transmission characteristics. After the reasonable geometric parameters are determined, the rotational angle of the upper metal layer and lower metal layer are changed. The linearly and circularly polarized wave are simultaneously achieved in the K band. In this article, the topology optimization technique is used to design the asymmetric transmission chiral metamaterial structure. The design process has a clear direction. The optimized asymmetric transmission chiral metamaterial has the simple structure type and the easy tunability of its asymmetric transmission characteristics. It can be used widely and easily in the fields of polarization converters and photodiodes. This design method has a broad application prospect in the chiral metamaterial field.
      Corresponding author: Qiu Ke-Peng, qiukp@nwpu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFB1102800) and the National Natural Science Foundation of China (Grant No. 11772258)
    [1]

    徐进, 李荣强, 蒋小平, 王身云, 韩天成 2019 物理学报 68 117801Google Scholar

    Xu J, Li R Q, Jiang X P, Wang S Y, Han T C 2019 Acta Phys. Sin. 68 117801Google Scholar

    [2]

    金柯, 刘永强, 韩俊, 杨崇民, 王颖辉, 王慧娜 2017 物理学报 66 134201Google Scholar

    Jin K, Liu Y Q, Han J, Yang C M, Wang Y H, Wang H N 2017 Acta Phys. Sin. 66 134201Google Scholar

    [3]

    Silva A, Monticone F, Castaldi G, Galdi V, Alu A, Engheta N 2014 Science 343 6167Google Scholar

    [4]

    Veselago V G 1968 Sov. Phys. Usp. 10 509Google Scholar

    [5]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 5514Google Scholar

    [6]

    Smith D R, Padilla W J, Vier D C, Nasser N, Schultz S 2000 Phys. Rev. Let. 84 4184Google Scholar

    [7]

    Pendry J B, Holden A J, Stewart W J, Youngs I 1996 Phys. Rev. Let. 76 4773Google Scholar

    [8]

    Pendry J B, Holden A J, Robbins D J, Stewart W J, Member 1999 IEEE Trans. on Microw. Theory. 47 2075Google Scholar

    [9]

    Caloz C, Itoh T 2004 IEEE Microw. Mag. 5 34Google Scholar

    [10]

    Liu D Y, Yao L F, Zhai X M, Li M H, Dong J F 2014 Appl. Phys. A 116 9Google Scholar

    [11]

    Yang Y, Wang W, Moitra P, Kravchenko I I, Briggs D P, Valentine J 2014 Nano Lett. 14 1394Google Scholar

    [12]

    Baena J D, Tisco J P, Slobozhanyuk A P, Glybovski S B, Belov P A 2015 Phys. Rev. B 92 245413Google Scholar

    [13]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Let. 100 207402Google Scholar

    [14]

    Yu N, Aieta F, Genevet P, Kats M A, Gaburro Z, Capasso F 2012 Nano Lett. 12 6328Google Scholar

    [15]

    Pendry J B 2000 Phys. Rev. Let. 85 3966Google Scholar

    [16]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 5801Google Scholar

    [17]

    Ganesel J K, Thiel M, Rill M S, Decker M, Bade K, Saile V, Freymann G, Linden S, Wegener M 2009 Science 325 1513Google Scholar

    [18]

    Tretyakov S, Nefedov I, Sihvola A, Maslovski S, Simovski C 2003 J. Electromagnet. Wave. 17 695Google Scholar

    [19]

    Fedotov V A, Mladyonov P L, Prosvirnin S L, Rogacheva A V, Chen Y, Zheludev N I 2006 Phys. Rev. Let. 97 167401Google Scholar

    [20]

    Fedotov V A, Schwanecke A S, Zheludev N I, Khardikov V V, Prosvirnin S L 2007 Nano Lett. 7 1996Google Scholar

    [21]

    Menzel C, Helgert C, Rockstuhl C, Kley E B, Tünnermann A, Pertsch T, Lederer F 2010 Phys. Rev. Let. 104 253902Google Scholar

    [22]

    Mutlu M, Akosman A E, Serebryannikov A E, Ozbay E 2012 Phys. Rev. Let. 108 213905Google Scholar

    [23]

    Singh R, Plum E, Menzel C, et al. 2009 Phys. Rev. B 80 153104Google Scholar

    [24]

    Plum E, Fedotov V A, Zheludev N I 2011 J. Opt. 13 024006

    [25]

    Shi J H, Liu X C, Yu S, Lv T T, Zhu Z, Ma H F, Cui T J 2013 Appl. Phys. Let 102 191905Google Scholar

    [26]

    Wu L X, Zhang M, Zhu B, Zhao J M, Jiang T, Feng Y J 2014 Appl. Phys. B 117 527

    [27]

    Stephen L, Yogesh N, Subramanian V 2018 J. Appl. Phys. 123 033103Google Scholar

    [28]

    Ji W, Cai T, Wang B, Wang G G, Li H P, Wang C Y, Hou H S, Zhang C B 2019 Opt. Express 27 2844Google Scholar

    [29]

    Liu W B, Wu W, Huang L R, Ling Y H, Ba C F, Li S, Chun Z H, Li H H 2019 Opt. Express 27 33399Google Scholar

    [30]

    Song Q H, Wu P C, Zhu W M, et al. 2019 Appl. Phys. Let. 114 151105Google Scholar

    [31]

    Liu M, Xu Q, Chen X Y, et al. 2019 Sci. Rep. 9 4097Google Scholar

    [32]

    Zhao J X, Song J L, Xu T Y, Yang T X, Zhou J H 2019 Opt. Express 27 9773Google Scholar

    [33]

    Dai L L, Zhang Y P, F. O’Hara J, Zhang H Y 2019 Opt. Express 27 35784Google Scholar

    [34]

    Novitsky A V, Galynsky V M, Zhukovsky S V 2012 Phys. Rev. B 86 075138Google Scholar

    [35]

    Mühlig S, Menzel C, Rockstuhl C, Lederer F 2011 Met. Mater. 5 64

    [36]

    Mirzamohammadi F, Nourinia J, Ghobadi C, Majidzadeh M 2019 Int. J. Electron. Commun. (AEÜ) 98 58Google Scholar

    [37]

    Liu D J, Xiao Z Y, Ma X L, Ma Q W, Xu X X, Wang Z H 2015 Opt. Commun. 338 359

  • 图 1  设计域原理图 (a) 6 × 6正方形网格; (b)表层设计域; (c)底层设计域

    Figure 1.  Schematic of design domain: (a) 6 × 6 square grid; (b) upper layer; (c) lower layer.

    图 2  优化迭代过程中的构型变化

    Figure 2.  Changing configuration during optimization iteration.

    图 3  优化单元仿真模型 (a) 3D视图; (b)正视图; (c)侧视图

    Figure 3.  Optimization unit simulation model: (a) 3D view; (b) front view; (c) side view.

    图 4  电磁波沿–z方向时, (a)初始结构透射系数(幅值)和(b)优化结构透射系数(幅值)

    Figure 4.  (a) Transmission coefficient (amplitude) of initial structure and (b) transmission coefficient (amplitude) of optimized structure under the condition of electromagnetic waves along the –z direction.

    图 5  (a)初始结构非对称传输系数$ {\varDelta }_{\mathrm{l}\mathrm{i}\mathrm{n}}^{x}/{\varDelta }_{\mathrm{l}\mathrm{i}\mathrm{n}}^{y} $; (b)优化结构非对称传输系数$ {\varDelta }_{\mathrm{l}\mathrm{i}\mathrm{n}}^{x}/{\varDelta }_{\mathrm{l}\mathrm{i}\mathrm{n}}^{y} $

    Figure 5.  (a) Asymmetric transmission coefficient of initial structure $ {\varDelta }_{\mathrm{l}\mathrm{i}\mathrm{n}}^{x}/{\varDelta }_{\mathrm{l}\mathrm{i}\mathrm{n}}^{y} $; (b) asymmetric transmission coefficient of optimized structure $ {\varDelta }_{\mathrm{l}\mathrm{i}\mathrm{n}}^{x}/{\varDelta }_{\mathrm{l}\mathrm{i}\mathrm{n}}^{y} $.

    图 6  样品图 (a)初始结构; (b)优化结构

    Figure 6.  Sample drawing: (a) Initial structure; (b) optimized structure.

    图 7  (a)矢量网络分析仪; (b)喇叭天线测试图

    Figure 7.  (a) Vector network analyzer; (b) horn antenna test chart.

    图 8  初始结构交叉极化透射系数 (a) $ {T}_{xy} $ ; (b)$ {T}_{yx} $

    Figure 8.  Cross polarization transmission coefficient of initial structure: (a) $ {T}_{xy} $; (b) $ {T}_{yx} $.

    图 9  优化结构交叉极化透射系数 (a) $ {T}_{xy} $ ; (b)$ {T}_{yx} $

    Figure 9.  Cross-polarization transmission coefficient of optimized structure: (a) $ {T}_{xy} $; (b) $ {T}_{yx} $.

    图 10  f = 20.075 GHz时的表面电流 (a)优化结构表层表面电流; (b)优化结构底层表面电流

    Figure 10.  Surface current at f = 20.075 GHz: (a) On the upper surface of the optimized structure; (b) on the lower surface of the optimized structure.

    图 11  f = 21.65 GHz时的表面电流 (a)优化结构表层表面电流; (b)优化结构底层表面电流

    Figure 11.  Surface current at f = 21.65 GHz: (a) On the upper surface of the optimized structure; (b) on the lower surface of the optimized structure.

    图 12  f = 28.575 GHz时的表面电流 (a)优化结构表层表面电流; (b)优化结构底层表面电流

    Figure 12.  Surface current at f = 28.575 GHz: (a) On the upper surface of the optimized structure; (b) on the lower surface of the optimized structure.

    图 13  线性x极化波沿–z及+z方向入射时优化结构两侧电场分布 (a), (b) f = 20.075 GHz; (c), (d) f = 21.65 GHz; (e), (f) f = 28.575 GHz

    Figure 13.  Electrical field distributions on both sides of the optimized structure when the linear x-polarized wave is incident along the –z and +z directions: (a), (b) f = 20.075 GHz; (c), (d) f = 21.65 GHz; (e), (f) f = 28.575 GHz

    图 14  线性x极化波沿–z方向入射时优化结构介质层厚度d对非对称传输系数$ {\varDelta }_{\mathrm{l}\mathrm{i}\mathrm{n}}^{x} $的影响

    Figure 14.  Effect of the thickness d of dielectric layer on the asymmetric transmission coefficient $ {\varDelta }_{\mathrm{l}\mathrm{i}\mathrm{n}}^{x} $when linear x-polarized wave is incident in the –z direction.

    图 15  线性x极化波沿–z方向入射时优化结构金属层厚度t对非对称传输系数$ {\varDelta }_{\mathrm{l}\mathrm{i}\mathrm{n}}^{x} $影响

    Figure 15.  Effect of the thickness t of the optimized structural metal layer on the asymmetric transmission coefficient $ {\varDelta }_{\mathrm{l}\mathrm{i}\mathrm{n}}^{x} $ when the linear x-polarized wave is incident in the–z direction.

    图 16  线性x极化波沿–z方向入射时优化结构网格边长b对非对称传输系数$ {\varDelta }_{\mathrm{l}\mathrm{i}\mathrm{n}}^{x} $影响

    Figure 16.  Effect of the small square side length b on the asymmetric transmission coefficient $ {\varDelta }_{\mathrm{l}\mathrm{i}\mathrm{n}}^{x} $ when the linear x-polarized wave is incident in the –z direction.

    图 17  旋转角度 (a)$ { \theta }_{1} $; (b)$ { \theta }_{2} $

    Figure 17.  Rotation angle: (a)$ {\theta }_{1} $; (b)$ { \theta }_{2} $.

    图 18  线性x极化波沿–z方向入射时底层金属旋转角度对非对称传输系数$ {\varDelta }_{\mathrm{l}\mathrm{i}\mathrm{n}}^{x} $影响

    Figure 18.  Influence of the rotation angle of the underlying metal on the asymmetric transmission coefficient $ {\varDelta }_{\mathrm{l}\mathrm{i}\mathrm{n}}^{x} $ when the linear x-polarized wave is incident in the –z direction.

    图 19  圆极化波沿–z方向入射时底层金属旋转角度对非对称传输系数$ {\varDelta }_{\mathrm{c}\mathrm{i}\mathrm{r}\mathrm{c}}^{-} $影响

    Figure 19.  Influence of the rotation angle of the underlying metal on the asymmetric transmission coefficient $ {\varDelta }_{\mathrm{c}\mathrm{i}\mathrm{r}\mathrm{c}}^{-} $ when a circularly polarized wave is incident in the –z direction.

    图 20  (a)线性极化波非对称传输系数$ {\varDelta }_{\mathrm{l}\mathrm{i}\mathrm{n}}^{x}/{\varDelta }_{\mathrm{l}\mathrm{i}\mathrm{n}}^{y} $; (b)圆极化波非对称传输系数$ {\varDelta }_{\mathrm{c}\mathrm{i}\mathrm{r}\mathrm{c}}^{+}/{\varDelta }_{\mathrm{c}\mathrm{i}\mathrm{r}\mathrm{c}}^{-} $

    Figure 20.  (a) Asymmetric transmission coefficient of linearly polarized wave $ {\varDelta }_{\mathrm{l}\mathrm{i}\mathrm{n}}^{x}/{\varDelta }_{\mathrm{l}\mathrm{i}\mathrm{n}}^{y} $; (b) asymmetric transmission coefficient of circularly polarized wave $ {\varDelta }_{\mathrm{c}\mathrm{i}\mathrm{r}\mathrm{c}}^{+}/{\varDelta }_{\mathrm{c}\mathrm{i}\mathrm{r}\mathrm{c}}^{-} $.

  • [1]

    徐进, 李荣强, 蒋小平, 王身云, 韩天成 2019 物理学报 68 117801Google Scholar

    Xu J, Li R Q, Jiang X P, Wang S Y, Han T C 2019 Acta Phys. Sin. 68 117801Google Scholar

    [2]

    金柯, 刘永强, 韩俊, 杨崇民, 王颖辉, 王慧娜 2017 物理学报 66 134201Google Scholar

    Jin K, Liu Y Q, Han J, Yang C M, Wang Y H, Wang H N 2017 Acta Phys. Sin. 66 134201Google Scholar

    [3]

    Silva A, Monticone F, Castaldi G, Galdi V, Alu A, Engheta N 2014 Science 343 6167Google Scholar

    [4]

    Veselago V G 1968 Sov. Phys. Usp. 10 509Google Scholar

    [5]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 5514Google Scholar

    [6]

    Smith D R, Padilla W J, Vier D C, Nasser N, Schultz S 2000 Phys. Rev. Let. 84 4184Google Scholar

    [7]

    Pendry J B, Holden A J, Stewart W J, Youngs I 1996 Phys. Rev. Let. 76 4773Google Scholar

    [8]

    Pendry J B, Holden A J, Robbins D J, Stewart W J, Member 1999 IEEE Trans. on Microw. Theory. 47 2075Google Scholar

    [9]

    Caloz C, Itoh T 2004 IEEE Microw. Mag. 5 34Google Scholar

    [10]

    Liu D Y, Yao L F, Zhai X M, Li M H, Dong J F 2014 Appl. Phys. A 116 9Google Scholar

    [11]

    Yang Y, Wang W, Moitra P, Kravchenko I I, Briggs D P, Valentine J 2014 Nano Lett. 14 1394Google Scholar

    [12]

    Baena J D, Tisco J P, Slobozhanyuk A P, Glybovski S B, Belov P A 2015 Phys. Rev. B 92 245413Google Scholar

    [13]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Let. 100 207402Google Scholar

    [14]

    Yu N, Aieta F, Genevet P, Kats M A, Gaburro Z, Capasso F 2012 Nano Lett. 12 6328Google Scholar

    [15]

    Pendry J B 2000 Phys. Rev. Let. 85 3966Google Scholar

    [16]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 5801Google Scholar

    [17]

    Ganesel J K, Thiel M, Rill M S, Decker M, Bade K, Saile V, Freymann G, Linden S, Wegener M 2009 Science 325 1513Google Scholar

    [18]

    Tretyakov S, Nefedov I, Sihvola A, Maslovski S, Simovski C 2003 J. Electromagnet. Wave. 17 695Google Scholar

    [19]

    Fedotov V A, Mladyonov P L, Prosvirnin S L, Rogacheva A V, Chen Y, Zheludev N I 2006 Phys. Rev. Let. 97 167401Google Scholar

    [20]

    Fedotov V A, Schwanecke A S, Zheludev N I, Khardikov V V, Prosvirnin S L 2007 Nano Lett. 7 1996Google Scholar

    [21]

    Menzel C, Helgert C, Rockstuhl C, Kley E B, Tünnermann A, Pertsch T, Lederer F 2010 Phys. Rev. Let. 104 253902Google Scholar

    [22]

    Mutlu M, Akosman A E, Serebryannikov A E, Ozbay E 2012 Phys. Rev. Let. 108 213905Google Scholar

    [23]

    Singh R, Plum E, Menzel C, et al. 2009 Phys. Rev. B 80 153104Google Scholar

    [24]

    Plum E, Fedotov V A, Zheludev N I 2011 J. Opt. 13 024006

    [25]

    Shi J H, Liu X C, Yu S, Lv T T, Zhu Z, Ma H F, Cui T J 2013 Appl. Phys. Let 102 191905Google Scholar

    [26]

    Wu L X, Zhang M, Zhu B, Zhao J M, Jiang T, Feng Y J 2014 Appl. Phys. B 117 527

    [27]

    Stephen L, Yogesh N, Subramanian V 2018 J. Appl. Phys. 123 033103Google Scholar

    [28]

    Ji W, Cai T, Wang B, Wang G G, Li H P, Wang C Y, Hou H S, Zhang C B 2019 Opt. Express 27 2844Google Scholar

    [29]

    Liu W B, Wu W, Huang L R, Ling Y H, Ba C F, Li S, Chun Z H, Li H H 2019 Opt. Express 27 33399Google Scholar

    [30]

    Song Q H, Wu P C, Zhu W M, et al. 2019 Appl. Phys. Let. 114 151105Google Scholar

    [31]

    Liu M, Xu Q, Chen X Y, et al. 2019 Sci. Rep. 9 4097Google Scholar

    [32]

    Zhao J X, Song J L, Xu T Y, Yang T X, Zhou J H 2019 Opt. Express 27 9773Google Scholar

    [33]

    Dai L L, Zhang Y P, F. O’Hara J, Zhang H Y 2019 Opt. Express 27 35784Google Scholar

    [34]

    Novitsky A V, Galynsky V M, Zhukovsky S V 2012 Phys. Rev. B 86 075138Google Scholar

    [35]

    Mühlig S, Menzel C, Rockstuhl C, Lederer F 2011 Met. Mater. 5 64

    [36]

    Mirzamohammadi F, Nourinia J, Ghobadi C, Majidzadeh M 2019 Int. J. Electron. Commun. (AEÜ) 98 58Google Scholar

    [37]

    Liu D J, Xiao Z Y, Ma X L, Ma Q W, Xu X X, Wang Z H 2015 Opt. Commun. 338 359

  • [1] Zeng Chao, Mao Yi-Yi, Wu Ji-Zhou, Yuan Tao, Dai Han-Ning, Chen Yu-Ao. Topological phase in one-dimensional momentum space lattice of ultracold atoms without chiral symmetry. Acta Physica Sinica, 2024, 73(4): 040301. doi: 10.7498/aps.73.20231566
    [2] Lü Yu-Xi, Wang Chen, Duan Tian-Qi, Zhao Tong, Chang Peng-Fa, Wang An-Bang. Asymmetric transmission of cascaded acousto-optic device and whispering gallery mode microcavity. Acta Physica Sinica, 2024, 73(1): 014101. doi: 10.7498/aps.73.20230653
    [3] Liu Jin-Pin, Wang Bing-Zhong, Chen Chuan-Sheng, Wang Ren. Inverse design of microwave waveguide devices based on deep physics-informed neural networks. Acta Physica Sinica, 2023, 72(8): 080201. doi: 10.7498/aps.72.20230031
    [4] Shi Peng-Fei, Ma Xin-Ying, Xiang Chuan, Zhao Hong-Ge, Li Yuan, Gao Ren-Jing, Liu Shu-Tian. Topology optimization design of dual-channel metasurface structure with controllable amplitude of retroreflection and mirror reflection. Acta Physica Sinica, 2023, 72(24): 247801. doi: 10.7498/aps.72.20230775
    [5] Shi Shu-Shu, Xiao Shan, Xu Xiu-Lai. Chiral optical transport of quantum dots with different diamagnetic behaviors in a waveguide. Acta Physica Sinica, 2022, 71(6): 067801. doi: 10.7498/aps.71.20211858
    [6] Sang Di, Xu Ming-Feng, An Qiang, Fu Yun-Qi. Freeform wavelength division multiplexing metagrating based on topology optimization. Acta Physica Sinica, 2022, 71(22): 224204. doi: 10.7498/aps.71.20221013
    [7] Nie Chang-Wen, Wu Han-Zhou, Wang Shu-Hao, Cai Yuan-Yuan, Song Shu, Sokolov Oleg, Bichurin M. I., Wang Yao-Jin. Theoretical model and tunability optimization of magnetoelectric voltage tunable inductor. Acta Physica Sinica, 2021, 70(24): 247501. doi: 10.7498/aps.70.20210899
    [8] Wu Min, Fei Hong-Ming, Lin Han, Zhao Xiao-Dan, Yang Yi-Biao, Chen Zhi-Hui. Design of asymmetric transmission of photonic crystal heterostructure based on two-dimensional hexagonal boron nitride material. Acta Physica Sinica, 2021, 70(2): 028501. doi: 10.7498/aps.70.20200741
    [9] Wang Peng-Cheng, Cao Yi, Xie Hong-Guang, Yin Yao, Wang Wei, Wang Ze-Ying, Ma Xin-Chen, Wang Lin, Huang Wei. Magnetic properties of layered chiral topological magnetic material Cr1/3NbS2. Acta Physica Sinica, 2020, 69(11): 117501. doi: 10.7498/aps.69.20200007
    [10] Fei Hong-Ming, Yan Shuai, Xu Yu-Cheng, Lin Han, Wu Min, Yang Yi-Biao, Chen Zhi-Hui, Tian Yuan, Zhang Ya-Min. Photonic crystal heterostructure with self-collimation effect for broad-band asymmetric optical transmission. Acta Physica Sinica, 2020, 69(18): 184214. doi: 10.7498/aps.69.20200538
    [11] Geng Zhi-Guo, Peng Yu-Gui, Shen Ya-Xi, Zhao De-Gang, Zhu Xue-Feng. Topological acoustic transports in chiral sonic crystals. Acta Physica Sinica, 2019, 68(22): 227802. doi: 10.7498/aps.68.20191007
    [12] Li Han-Ling, Cao Bing-Yang. Topology optimization of the volume-to-point heat conduction problem at micro- and nano-scale. Acta Physica Sinica, 2019, 68(20): 200201. doi: 10.7498/aps.68.20190923
    [13] Liao Tao, Sun Xiao-Wei, Song Ting, Tian Jun-Hong, Kang Tai-Feng, Sun Wei-Bin. Tunable bandgaps in novel two-dimensional piezoelectric phononic crystal slab. Acta Physica Sinica, 2018, 67(21): 214208. doi: 10.7498/aps.67.20180611
    [14] Xu Gui-Zhou, Xu Zhan, Ding Bei, Hou Zhi-Peng, Wang Wen-Hong, Xu Feng. Magnetic domain chirality and tuning of skyrmion topology. Acta Physica Sinica, 2018, 67(13): 137508. doi: 10.7498/aps.67.20180513
    [15] Mo Man-Man, Ma Wu-Wei, Pang Yong-Qiang, Chen Run-Hua, Zhang Xiao-Mei, Liu Zhao-Tang, Li Xiang, Guo Wan-Tao. Broadband absorbent materials based on topology optimization design. Acta Physica Sinica, 2018, 67(21): 217801. doi: 10.7498/aps.67.20181170
    [16] Luo Xiao-Yuan, Li Hao, Ma Ju-Hai. Topology optimization algorithm for wireless networks based on the algebraic properties of minimum rigid graph. Acta Physica Sinica, 2016, 65(24): 240201. doi: 10.7498/aps.65.240201
    [17] Shang Xun-Zhong, Chen Wei, Cao Wan-Qiang. Research on dielectric tunability of relaxor ferroelectrics. Acta Physica Sinica, 2012, 61(21): 217701. doi: 10.7498/aps.61.217701
    [18] Gu Chao, Qu Shao-Bo, Pei Zhi-Bin, Xu Zhuo, Ma Hua, Lin Bao-Qin, Bai Peng, Peng Wei-Dong. A polarization-insensitive and double-face-absorption chiral metamaterial absorber. Acta Physica Sinica, 2011, 60(10): 107801. doi: 10.7498/aps.60.107801
    [19] Liang Rui-Hong, Dong Xian-Lin, Chen Ying, Cao Fei, Wang Yong-Ling. Mechanism of nonlinear dielectric constant of BaTiO3-based ceramics under high DC electric field. Acta Physica Sinica, 2005, 54(10): 4914-4919. doi: 10.7498/aps.54.4914
    [20] Tao Wei-Dong, Xia Hai-Peng, Bai Gui-Ru, Dong Jian-Feng, Nie Qiu-Hua. . Acta Physica Sinica, 2002, 51(3): 685-689. doi: 10.7498/aps.51.685
Metrics
  • Abstract views:  7697
  • PDF Downloads:  204
  • Cited By: 0
Publishing process
  • Received Date:  14 May 2020
  • Accepted Date:  05 June 2020
  • Available Online:  28 October 2020
  • Published Online:  05 November 2020

/

返回文章
返回