Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Detection of nitrous oxide by resonant photoacoustic spectroscopy based on mid infrared quantum cascade laser

Zhou Yu Cao Yuan Zhu Gong-Dong Liu Kun Tan Tu Wang Li-Jun Gao Xiao-Ming

Citation:

Detection of nitrous oxide by resonant photoacoustic spectroscopy based on mid infrared quantum cascade laser

Zhou Yu, Cao Yuan, Zhu Gong-Dong, Liu Kun, Tan Tu, Wang Li-Jun, Gao Xiao-Ming
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Atmospheric greenhouse gases have great influence on the climate forcing, which is important to human being and also for natural systems. Nitrous oxide (N2O), such as carbon dioxide and methane, is an important greenhouse gas. It plays an important role in the atmospheric environment. Therefore, sensitive measurement of N2O concentration is of significance for studying the atmospheric environment. In this paper, a photoacoustic spectroscopy (PAS) system based on 7.6 m mid infrared quantum cascade laser combined with resonant PAS technique is established for the sensitive detection of N2O concentration. The PAS has been regarded as a highly sensitive and selective technique to measure trace gases. Compared with laser absorption spectroscopy, the PAS offers several intrinsic attractive features including ultra-compact size and no cross-response of light scattering. In addition, the signal of PAS is recorded with low-cost wavelength-independent acoustic transducer. The performance of the developed system is optimized and improved based on the traditional photoacoustic spectroscopic detection. Dual beam enhancement method is used to increase the effective optical power which effectively improves the detection sensitivity of the system. The N2O absorption line at 1307.66 cm-1 is chosen as the target line, and an operation pressure of 50 kPa is selected for reducing cross-talking from H2O absorption line. By detecting the photoacoustic signals of a certain concentration of N2O at different modulation frequencies and modulation amplitudes, the optimal modulation frequency and modulation amplitude of the system are determined to be 800 Hz and 90 mV, respectively. Different concentrations of N2O gas are detected under the optimized parameters, and calibration curve of the system, that is, the curve of photoacoustic signal versus concentration of N2O is obtained, which shows good linearity. The experimental results show that the minimum detection limit of the system is 150 ppb at a pressure of 50 kPa with an integration time of 30 ms. The system noise can be further reduced by increasing the averaging time. A minimum detection limit of 37 ppb is achieved by averaging signals 100 times, and the signal of N2O in the atmosphere is obtained.
      Corresponding author: Liu Kun, liukun@aiofm.ac.cn;xmgao@aiofm.ac.cn ; Gao Xiao-Ming, liukun@aiofm.ac.cn;xmgao@aiofm.ac.cn
    • Funds: Project supported by the National Key Research and Development Program, China (Grant No. 2017YFC0209700) and the National Natural Science Foundation of China (Grant Nos. 41730103, 41475023, 41575030, 61734006).
    [1]

    Montzka S A, Dlugokencky E J, Butler J H 2011 Nature 476 43

    [2]

    Ravishankara A R, Daniel J S, Portmann R W 2009 Science 326 123

    [3]

    Grossel A, Zeninari V, Parvitte B, Joly L, Courtois D 2007 Appl. Phys. B 88 483

    [4]

    Solomon S, Qing D H, Manning M, Marquis M, Averyt K, Tignor M, Miller H L, Chen Z L 2007 Climate Change 2007:The Physical Science Basis (Cambridge:Cambridge University Press) pp128-130

    [5]

    Bozki Z, Pogany A, Szabo G 2011 Appl. Spectrosc. Rev. 46 1

    [6]

    Meyer P L, Sigrist M W 1990 Rev. Sci. Instrum. 61 1779

    [7]

    Narasimhan L R, Goodman W, Patel C K N 2001 Proc. Natl. Acad. Sci. USA 98 4617

    [8]

    Kerr E L, Atwood J G 1968 Appl. Opt. 7 915

    [9]

    Kreuzer L B 1971 J. Appl. Phys. 42 2934

    [10]

    Wynn C M, Palmacci S T, Clark M L, Kunz R R 2014 Opt. Eng. 53 021103

    [11]

    Curl R F, Tittel F K 2002 Annu. Rep. Prog. Chem. C:Phys. Chem. 98 219

    [12]

    Kosterev A A, Bakhirkin Y A, Curl R F, Tittel F K 2002 Opt. Lett. 27 1902

    [13]

    Liu K, Guo X Y, Yi H M, Chen W D, Zhang W J, Gao X M 2009 Opt. Lett. 34 1594

    [14]

    Liu K, Mei J X, Zhang W J, Chen W D, Gao X M 2017 Sensor Actuat B:Chem. 251 632

    [15]

    Liu Q, Wang G S, Liu K, Chen W D, Zhu W Y, Huang Y B, Gao X M 2014 Infrared Laser Eng. 43 3010 (in Chinese)[刘强, 王贵师, 刘锟, 陈卫东, 朱文越, 黄印博, 高晓明 2014 红外与激光工程 43 3010]

    [16]

    Liu K, Yi H M, Kosterev A A, Chen W D, Dong L, Wang L, Tan T, Zhang W J, Tittel F K, Gao X M 2010 Rev. Sci. Instrum. 81 103103.

    [17]

    Wu H P, Dong L, Zheng H D, Liu X L, Yin X K, Ma W G, Zhang L, Yin W B, Jia S T, Tittel F K 2015 Sensor Actuat B:Chem. 221 666

    [18]

    Zha S L, Liu K, Zhu G D, Tan T, Wang L, Wang G S, Mei J X, Gao X M 2017 Spectrosc. Spect. Anal. 37 2673 (in Chinese)[査申龙, 刘锟, 朱公栋, 谈图, 汪磊, 王贵师, 梅教旭, 高晓明 2017 光谱学与光谱分析 37 2673]

    [19]

    Nelson D D, McManus B, Urbanski S 2004 Spectrochim. Acta A 60 3325

    [20]

    Yu Y J, Sanchez N P, Griffin R J, Tittel F K 2016 Opt. Express 24 10391

    [21]

    Tan T, Liu K, Wang G S, Wang L, Chen W D, Gao X M 2015 Acta Opt. Sin. 35 0230005 (in Chinese)[谈图, 刘锟, 王贵师, 汪磊, 陈卫东, 高晓明 2015 光学学报 35 0230005]

    [22]

    Rothman L S, Jacaquemart D, Barbe A, Chris Benner D, Birk M, Brown L R, Carleer M R, Charkerian C, Chance K, Coudert L H, Dana V, Devi M V, Flaud J M, Gamache R R, Goldman A, Hartmann J M, Jucks K W, Maki A G, Mandin J Y, Massie S T, Orphal J, Perrin A, Rinsland C P, Smith M A H, Tennyson J, Tolchenov R N, Toth R A, Auwera J V, Varanasi P, Wagner G 2005 J. Quant. Spectrosc. Ra. 96 139

    [23]

    Zhang J C, Wang L J, Tan S, Chen J Y, Zhai S Q, Liu J Q, Liu F Q, Wang Z G 2012 IEEE Photon. Tech. L. 24 1100

  • [1]

    Montzka S A, Dlugokencky E J, Butler J H 2011 Nature 476 43

    [2]

    Ravishankara A R, Daniel J S, Portmann R W 2009 Science 326 123

    [3]

    Grossel A, Zeninari V, Parvitte B, Joly L, Courtois D 2007 Appl. Phys. B 88 483

    [4]

    Solomon S, Qing D H, Manning M, Marquis M, Averyt K, Tignor M, Miller H L, Chen Z L 2007 Climate Change 2007:The Physical Science Basis (Cambridge:Cambridge University Press) pp128-130

    [5]

    Bozki Z, Pogany A, Szabo G 2011 Appl. Spectrosc. Rev. 46 1

    [6]

    Meyer P L, Sigrist M W 1990 Rev. Sci. Instrum. 61 1779

    [7]

    Narasimhan L R, Goodman W, Patel C K N 2001 Proc. Natl. Acad. Sci. USA 98 4617

    [8]

    Kerr E L, Atwood J G 1968 Appl. Opt. 7 915

    [9]

    Kreuzer L B 1971 J. Appl. Phys. 42 2934

    [10]

    Wynn C M, Palmacci S T, Clark M L, Kunz R R 2014 Opt. Eng. 53 021103

    [11]

    Curl R F, Tittel F K 2002 Annu. Rep. Prog. Chem. C:Phys. Chem. 98 219

    [12]

    Kosterev A A, Bakhirkin Y A, Curl R F, Tittel F K 2002 Opt. Lett. 27 1902

    [13]

    Liu K, Guo X Y, Yi H M, Chen W D, Zhang W J, Gao X M 2009 Opt. Lett. 34 1594

    [14]

    Liu K, Mei J X, Zhang W J, Chen W D, Gao X M 2017 Sensor Actuat B:Chem. 251 632

    [15]

    Liu Q, Wang G S, Liu K, Chen W D, Zhu W Y, Huang Y B, Gao X M 2014 Infrared Laser Eng. 43 3010 (in Chinese)[刘强, 王贵师, 刘锟, 陈卫东, 朱文越, 黄印博, 高晓明 2014 红外与激光工程 43 3010]

    [16]

    Liu K, Yi H M, Kosterev A A, Chen W D, Dong L, Wang L, Tan T, Zhang W J, Tittel F K, Gao X M 2010 Rev. Sci. Instrum. 81 103103.

    [17]

    Wu H P, Dong L, Zheng H D, Liu X L, Yin X K, Ma W G, Zhang L, Yin W B, Jia S T, Tittel F K 2015 Sensor Actuat B:Chem. 221 666

    [18]

    Zha S L, Liu K, Zhu G D, Tan T, Wang L, Wang G S, Mei J X, Gao X M 2017 Spectrosc. Spect. Anal. 37 2673 (in Chinese)[査申龙, 刘锟, 朱公栋, 谈图, 汪磊, 王贵师, 梅教旭, 高晓明 2017 光谱学与光谱分析 37 2673]

    [19]

    Nelson D D, McManus B, Urbanski S 2004 Spectrochim. Acta A 60 3325

    [20]

    Yu Y J, Sanchez N P, Griffin R J, Tittel F K 2016 Opt. Express 24 10391

    [21]

    Tan T, Liu K, Wang G S, Wang L, Chen W D, Gao X M 2015 Acta Opt. Sin. 35 0230005 (in Chinese)[谈图, 刘锟, 王贵师, 汪磊, 陈卫东, 高晓明 2015 光学学报 35 0230005]

    [22]

    Rothman L S, Jacaquemart D, Barbe A, Chris Benner D, Birk M, Brown L R, Carleer M R, Charkerian C, Chance K, Coudert L H, Dana V, Devi M V, Flaud J M, Gamache R R, Goldman A, Hartmann J M, Jucks K W, Maki A G, Mandin J Y, Massie S T, Orphal J, Perrin A, Rinsland C P, Smith M A H, Tennyson J, Tolchenov R N, Toth R A, Auwera J V, Varanasi P, Wagner G 2005 J. Quant. Spectrosc. Ra. 96 139

    [23]

    Zhang J C, Wang L J, Tan S, Chen J Y, Zhai S Q, Liu J Q, Liu F Q, Wang Z G 2012 IEEE Photon. Tech. L. 24 1100

  • [1] Liu Li-Xian, Chen Bai-Song, Zhang Le, Zhang Xue-Shi, Huan Hui-Ting, Yin Xu-Kun, Shao Xiao-Peng, Ma Yu-Fei, Mandelis Andreas. Photoacoustic simultaneous detection of multiple trace gases for industrial park application. Acta Physica Sinica, 2022, 71(17): 170701. doi: 10.7498/aps.71.20220613
    [2] Yin Xu-Kun, Dong Lei, Wu Hong-Peng, Liu Li-Xian, Shao Xiao-Peng. Design and optimization of photoacoustic CO gas sensor for fault diagnosis of SF6 gas insulated equipment. Acta Physica Sinica, 2021, 70(17): 170701. doi: 10.7498/aps.70.20210532
    [3] Li Meng-Qi, Zhang Yu-Jun, He Ying, You Kun, Fan Bo-Qiang, Yu Dong-Qi, Xie Hao, Lei Bo-En, Li Xiao-Yi, Liu Jian-Guo, Liu Wen-Qing. NH3 aliasing absorption spectra at 1103.4 cm–1 based on continuous quantum cascade laser. Acta Physica Sinica, 2020, 69(7): 074201. doi: 10.7498/aps.69.20191832
    [4] Cheng Gang, Cao Yuan, Liu Kun, Cao Ya-Nan, Chen Jia-Jin, Gao Xiao-Ming. Numerical calculation and optimization of photoacoustic cell for photoacoustic spectrometer. Acta Physica Sinica, 2019, 68(7): 074202. doi: 10.7498/aps.68.20182084
    [5] Zhou Kang, Li Hua, Wan Wen-Jian, Li Zi-Ping, Cao Jun-Cheng. Group velocity dispersion analysis of terahertz quantum cascade laser frequency comb. Acta Physica Sinica, 2019, 68(10): 109501. doi: 10.7498/aps.68.20190217
    [6] Guan Lin-Qiang, Deng Hao, Yao Lu, Nie Wei, Xu Zhen-Yu, Li Xiang, Zang Yi-Peng, Hu Mai, Fan Xue-Li, Yang Chen-Guang, Kan Rui-Feng. Measurement of middle infrared spectroscopic parameters of carbon disulfide based on tunable diode laser absorption spectroscopy. Acta Physica Sinica, 2019, 68(8): 084204. doi: 10.7498/aps.68.20182140
    [7] Jin Hua-Wei, Hu Ren-Zhi, Xie Pin-Hua, Chen Hao, Li Zhi-Yan, Wang Feng-Yang, Wang Yi-Hui, Lin Chuan. Photo-acoustic technology applied to ppb level NO2 detection by using low power blue diode laser. Acta Physica Sinica, 2019, 68(7): 070703. doi: 10.7498/aps.68.20182262
    [8] Zhou Chao, Zhang Lei, Li Jin-Song. Detection of atmospheric multi-component based on a single quantum cascade laser. Acta Physica Sinica, 2017, 66(9): 094203. doi: 10.7498/aps.66.094203
    [9] Lin Ying-Ying, Li Kui-Ying, Shan Qing-Song, Yin Hua, Zhu Rui-Ping. Photoacoustic and surface photovoltaic characteristics of L-Cysteine-capped ZnSe quantum dots with a core-shell structure. Acta Physica Sinica, 2016, 65(3): 038101. doi: 10.7498/aps.65.038101
    [10] Ma Yu-Fei, He Ying, Yu Xin, Yu Guang, Zhang Jing-Bo, Sun Rui. Research on high sensitivity detection of carbon monoxide based on quantum cascade laser and quartz-enhanced photoacoustic spectroscopy. Acta Physica Sinica, 2016, 65(6): 060701. doi: 10.7498/aps.65.060701
    [11] Wan Wen-Jian, Yin Rong, Tan Zhi-Yong, Wang Feng, Han Ying-Jun, Cao Jun-Cheng. Study of 2.9 THz quantum cascade laser based on bound-to-continuum transition. Acta Physica Sinica, 2013, 62(21): 210701. doi: 10.7498/aps.62.210701
    [12] Yu Rong, Jiang Yue-Song, Yu Lan, Ou Jun. Using scattered light to amplify the photoacoustic spectroscopic signatures of the main absorbing material in a weakly light-absorbing solid mixture. Acta Physica Sinica, 2013, 62(8): 087802. doi: 10.7498/aps.62.087802
    [13] Xu Xue-Mei, Li Ben-Rong, Yang Bing-Chu, Jiang Li, Yin Lin-Zi, Ding Yi-Peng, Cao Can. Gas measurement system of NO and NO2 based on photoacoustic spectroscopy. Acta Physica Sinica, 2013, 62(20): 200704. doi: 10.7498/aps.62.200704
    [14] Tan Zhi-Yong, Chen Zhen, Han Ying-Jun, Zhang Rong, Li Hua, Guo Xu-Guang, Cao Jun-Cheng. Experimental realization of wireless transmission based on terahertz quantumcascade laser. Acta Physica Sinica, 2012, 61(9): 098701. doi: 10.7498/aps.61.098701
    [15] Dong Mei-Li, Zhao Wei-Xiong, Cheng Yue, Hu Chang-Jin, Gu Xue-Jun, Zhang Wei-Jun. Incoherent broadband cavity enhanced absorption spectroscopy for trace gases detection and aerosol extinction measurement. Acta Physica Sinica, 2012, 61(6): 060702. doi: 10.7498/aps.61.060702
    [16] Li Hua, Han Ying-Jun, Tan Zhi-Yong, Zhang Rong, Cao Jun-Cheng. Device fabrication of semi-insulating surface-plasmon terahertz quantum-cascade lasers. Acta Physica Sinica, 2010, 59(3): 2169-2172. doi: 10.7498/aps.59.2169
    [17] Li Zhi-Hui, Yuan Chang-Ying, Meng Gui, Yan Zheng-Xin, Shang Li-Ping. Photoacoustic signal saturation characteristics of concentrated gases. Acta Physica Sinica, 2010, 59(10): 6908-6913. doi: 10.7498/aps.59.6908
    [18] Tang Yuan-Yuan, Liu Wen-Qing, Kan Rui-Feng, Zhang Yu-Jun, Liu Jian-Guo, Xu Zhen-Yu, Shu Xiao-Wen, Zhang Shuai, He Ying, Geng Hui, Cui Yi-Ben. Spectroscopy processing for the NO measurement based on the room-temperature pulsed quantum cascade laser. Acta Physica Sinica, 2010, 59(4): 2364-2368. doi: 10.7498/aps.59.2364
    [19] Xu Gang-Yi, Li Ai-Zhen. Interface phonons in the active core of a quantum cascade laser. Acta Physica Sinica, 2007, 56(1): 500-506. doi: 10.7498/aps.56.500
    [20] Lin Gui-Jiang, Zhou Zhi-Wen, Lai Hong-Kai, Li Cheng, Chen Song-Yan, Yu Jin-Zhong. Energy band design for Si/SiGe quantum cascade laser. Acta Physica Sinica, 2007, 56(7): 4137-4142. doi: 10.7498/aps.56.4137
Metrics
  • Abstract views:  7520
  • PDF Downloads:  286
  • Cited By: 0
Publishing process
  • Received Date:  20 December 2017
  • Accepted Date:  08 January 2018
  • Published Online:  20 April 2019

/

返回文章
返回