Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Phonon angular momentum and chiral phonons

Yu Hang Xu Xi-Fang Niu Qian Zhang Li-Fa

Citation:

Phonon angular momentum and chiral phonons

Yu Hang, Xu Xi-Fang, Niu Qian, Zhang Li-Fa
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In traditional physics, phonon is widely regarded as being linearly polarized, which means that phonon carries zero angular momentum. Thus the angular momentum of lattice related to mechanical rotation only reflects the lattice rigid-body motion. Recently, in a magnetic system with time reversal symmetry broken by spin-phonon interaction, one found that the phonon angular momentum is nonzero and an odd function of magnetization. At zero temperature, phonon was reported to have a zero-point angular momentum and zero-point energy. Thus the gyromagnetic ratio obtained through the Einstein-de Haas effect needs correcting by considering the nonzero phonon angular momentum. As is well known, if phonon has nonzero angular momentum, which means that phonon can have rotation, it can be right-handed or left-handed, that is, the phonon is chiral. Actually, we can define the polarization of phonon to represent the phonon chirality, which comes from the circular vibration of sublattices. When the phonon polarization is larger (less) than zero, the phonon is right (left)-handed. In non-magnetic honeycomb AB lattices, with inversion symmetrybrocken, the chiral phonons are found to be of valley contrasting circular polarization and concentrated in Brillouin-zone corners. At valleys, there is a three-fold rotational symmetry endowing phonons with quantized pseudo angular momentum. Then conversation of pseudo angular momentum, which determines the selection rules in phonon-involved intervalley scattering of electrons, must be satisfied. Chiral valley phonons can be measured by polarized infrared absorption or emission. In addition, since the phonon Berry curvature is reported to be nonzero at valley, it can distort phonon transport under a strain gradient, which can act as an effective magnetic field. Thus, a valley phonon Hall effect is theoretically predicted, which is probably a method of measuring chiral valley phonons. In consideration of phonons angular momentum and chiral phonons, photon helicity changed by phonons at Gamma point will be explained reasonably. In conclusion, chiral phonons are present in systems that break time reversal or spatial inversion symmetries. In a magnetic system, where time reversal symmetry is broken, phonons generally carry a nonzero angular momentum, which can influence the classic Einstein-de Haas effect. In a nonequilibrium system, the phonon Hall effect can be observed due to the chiral phonons. In a non-magnetic crystal, with inversion symmetry brocken, phonons in the Brillouin-zone center and corners are chiral and have a quantized pseudo angular momentum, providing an alternative to valleytronics in insulators. We believe that the findings of the phonon angular momentum and the chiral phonons together with phonon pseudoangular momentum, selection rules, and valley phonon Hall effect will lead to the relevant exploration and new development of phonon related subject in condensed matter physics.
      Corresponding author: Zhang Li-Fa, phyzlf@njnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11574154).
    [1]

    Einstein A, de Haas W J 1915 Verh. Dtsch. Phys. Ges. 17 152

    [2]

    Leduc M A 1887 J. Phys. 6 378

    [3]

    Strohm C, Rikken G, Wyder P 2005 Phys. Rev. Lett. 95 155901

    [4]

    Inyushkin A V, Taldenkov A N 2007 JETP Lett. 86 379

    [5]

    Sheng L, Sheng D N, Ting C S 2006 Phys. Rev. Lett. 96 155901

    [6]

    Kagan Y, Maksimov L A 2008 Phys. Rev. Lett. 100 145902

    [7]

    Qin T, Niu Q, Shi J R 2011 Phys. Rev. Lett. 107 236601

    [8]

    Zhang L 2011 Ph. D. Dissertation (Singapore: National University of Singapore)

    [9]

    Zhang L F, Niu Q 2014 Phys. Rev. Lett. 112 085503

    [10]

    Ray T, Ray D K 1967 Phys. Rev. 164 420

    [11]

    Ioselevich A S, Capellmann H 1995 Phys. Rev. B 51 11446

    [12]

    Qin T, Zhou J, Shi J R 2012 Phys. Rev. B 86 104305

    [13]

    Walton D 1967 Phys. Rev. Lett. 19 305

    [14]

    Reck R A, Fry D L 1969 Phys. Rev. 184 492

    [15]

    Xiao D, Yao W, Niu Q 2007 Phys. Rev. Lett. 99 236809

    [16]

    Zeng H L, Cui X D 2016 Wuli 45 505 (in Chinese) [曾华凌, 崔晓冬 2016 物理 45 505]

    [17]

    Zeng H L, Dai J F, Yao W, Xiao D, Cui X D 2012 Nat. Nanotech. 7 490

    [18]

    Chen S Y, Zheng C X, Fuhrer M S, Yan J 2015 Nano Lett. 15 2526

    [19]

    Zhang L F, Niu Q 2015 Phys. Rev. Lett. 115 115502

    [20]

    Chen S Y, Wu Q, Mishra C, Kang J, Zhang H, Cho K, Cai W, Balandin A A, Ruoff R S 2012 Nat. Mater. 11 203

    [21]

    Zhou S Y, Gweon G H, Fedorov A V, First P N, de Heer W A, Lee D H, Guinea F, Castro Neto A H, Lanzara A 2007 Nat. Mater. 6 770

    [22]

    Kim G, Jang A R, Jeong H Y, Lee Z, Kang D J, Shin H S 2013 Nano Lett. 13 1834

    [23]

    Saito R, Jorio A, Souza Filho A G, Dresselhaus G, Dresselhaus M S, Pimenta M A 2001 Phys. Rev. Lett. 88 027401

    [24]

    Malarda L M, Pimentaa M A, Dresselhaus G, Dresselhaus M S 2009 Phys. Rep. 473 51

    [25]

    Cao T, Wang G, Han W P, Ye H Q, Zhu C R, Shi J R, Niu Q, Tan P H, Wang E, Liu B L, Feng J 2012 Nat. Commun. 3 887

    [26]

    Wu F, Qu F, MacDonald A H 2015 Phys. Rev. B 91 075310

    [27]

    Chang M C, Niu Q 1996 Phys. Rev. B 53 7010

    [28]

    Xiao D, Chang M C, Niu Q 2010 Rev. Mod. Phys. 82 1959

    [29]

    Mak K F, McGill K L, Park J, McEuen P L 2014 Science 344 1489

    [30]

    Gorbachev R V, Song S J C, Yu G L, Kretinin A V, Withers F, Cao Y, Mishchenko A, Grigorieva I V, Novoselov K S, Levitov L S, Geim A K 2014 Science 346 448

    [31]

    Sheng L, Sheng D N, Ting C S 2006 Phys. Rev. Lett. 96 155901

    [32]

    Tian Y, Shen S P, Cong J Z, Chai Y S, Yan L Q, Wang S G, Sun Y 2016 J. Am. Chem. Soc. 138 782

    [33]

    Goldstein T, Chen S Y, Tong J, Xiao D, Ramasubramaniam A, Yan J 2016 Sci. Rep. 6 28024

    [34]

    Lu J Y, Qiu C Y, Ke M Z, Liu Z Y 2016 Phys. Rev. Lett. 116 093901

    [35]

    Zhu H, et al. 2018 Science 359 6375

  • [1]

    Einstein A, de Haas W J 1915 Verh. Dtsch. Phys. Ges. 17 152

    [2]

    Leduc M A 1887 J. Phys. 6 378

    [3]

    Strohm C, Rikken G, Wyder P 2005 Phys. Rev. Lett. 95 155901

    [4]

    Inyushkin A V, Taldenkov A N 2007 JETP Lett. 86 379

    [5]

    Sheng L, Sheng D N, Ting C S 2006 Phys. Rev. Lett. 96 155901

    [6]

    Kagan Y, Maksimov L A 2008 Phys. Rev. Lett. 100 145902

    [7]

    Qin T, Niu Q, Shi J R 2011 Phys. Rev. Lett. 107 236601

    [8]

    Zhang L 2011 Ph. D. Dissertation (Singapore: National University of Singapore)

    [9]

    Zhang L F, Niu Q 2014 Phys. Rev. Lett. 112 085503

    [10]

    Ray T, Ray D K 1967 Phys. Rev. 164 420

    [11]

    Ioselevich A S, Capellmann H 1995 Phys. Rev. B 51 11446

    [12]

    Qin T, Zhou J, Shi J R 2012 Phys. Rev. B 86 104305

    [13]

    Walton D 1967 Phys. Rev. Lett. 19 305

    [14]

    Reck R A, Fry D L 1969 Phys. Rev. 184 492

    [15]

    Xiao D, Yao W, Niu Q 2007 Phys. Rev. Lett. 99 236809

    [16]

    Zeng H L, Cui X D 2016 Wuli 45 505 (in Chinese) [曾华凌, 崔晓冬 2016 物理 45 505]

    [17]

    Zeng H L, Dai J F, Yao W, Xiao D, Cui X D 2012 Nat. Nanotech. 7 490

    [18]

    Chen S Y, Zheng C X, Fuhrer M S, Yan J 2015 Nano Lett. 15 2526

    [19]

    Zhang L F, Niu Q 2015 Phys. Rev. Lett. 115 115502

    [20]

    Chen S Y, Wu Q, Mishra C, Kang J, Zhang H, Cho K, Cai W, Balandin A A, Ruoff R S 2012 Nat. Mater. 11 203

    [21]

    Zhou S Y, Gweon G H, Fedorov A V, First P N, de Heer W A, Lee D H, Guinea F, Castro Neto A H, Lanzara A 2007 Nat. Mater. 6 770

    [22]

    Kim G, Jang A R, Jeong H Y, Lee Z, Kang D J, Shin H S 2013 Nano Lett. 13 1834

    [23]

    Saito R, Jorio A, Souza Filho A G, Dresselhaus G, Dresselhaus M S, Pimenta M A 2001 Phys. Rev. Lett. 88 027401

    [24]

    Malarda L M, Pimentaa M A, Dresselhaus G, Dresselhaus M S 2009 Phys. Rep. 473 51

    [25]

    Cao T, Wang G, Han W P, Ye H Q, Zhu C R, Shi J R, Niu Q, Tan P H, Wang E, Liu B L, Feng J 2012 Nat. Commun. 3 887

    [26]

    Wu F, Qu F, MacDonald A H 2015 Phys. Rev. B 91 075310

    [27]

    Chang M C, Niu Q 1996 Phys. Rev. B 53 7010

    [28]

    Xiao D, Chang M C, Niu Q 2010 Rev. Mod. Phys. 82 1959

    [29]

    Mak K F, McGill K L, Park J, McEuen P L 2014 Science 344 1489

    [30]

    Gorbachev R V, Song S J C, Yu G L, Kretinin A V, Withers F, Cao Y, Mishchenko A, Grigorieva I V, Novoselov K S, Levitov L S, Geim A K 2014 Science 346 448

    [31]

    Sheng L, Sheng D N, Ting C S 2006 Phys. Rev. Lett. 96 155901

    [32]

    Tian Y, Shen S P, Cong J Z, Chai Y S, Yan L Q, Wang S G, Sun Y 2016 J. Am. Chem. Soc. 138 782

    [33]

    Goldstein T, Chen S Y, Tong J, Xiao D, Ramasubramaniam A, Yan J 2016 Sci. Rep. 6 28024

    [34]

    Lu J Y, Qiu C Y, Ke M Z, Liu Z Y 2016 Phys. Rev. Lett. 116 093901

    [35]

    Zhu H, et al. 2018 Science 359 6375

  • [1] Wu Hai-Bin, Liu Ying-Di, Liu Yan-Jun, Li Jin-Hua, Liu Jian-Jun. Chiral Majorana fermions resonance exchange moudulated by quantum dot coupling strength. Acta Physica Sinica, 2024, 73(13): 130502. doi: 10.7498/aps.73.20240739
    [2] Jin Zhe-Jun-Yu, Zeng Zhao-Zhuo, Cao Yun-Shan, Yan Peng. Magnon Hall effect. Acta Physica Sinica, 2024, 73(1): 017501. doi: 10.7498/aps.73.20231589
    [3] Shen Kai-Bo, Liu Ying-Guang, Li Xin, Li Heng-Xuan. Phonon interference effects in graphene nanomesh. Acta Physica Sinica, 2023, 72(12): 123102. doi: 10.7498/aps.72.20230361
    [4] Li Yin-Ming, Kong Peng, Bi Ren-Gui, He Zhao-Jian, Deng Ke. Valley topological states in double-surface periodic elastic phonon crystal plates. Acta Physica Sinica, 2022, 71(24): 244302. doi: 10.7498/aps.71.20221292
    [5] Cui Can, Wang Zhi, Li Qiang, Wu Chong-Qing, Wang Jian. Modulation of orbital angular momentum in long periodchirally-coupled-cores fiber. Acta Physica Sinica, 2019, 68(6): 064211. doi: 10.7498/aps.68.20182036
    [6] Wang Yi-He, Zhang Zhi-Wang, Cheng Ying, Liu Xiao-Jun. Pseudospin modes of surface acoustic wave and topologically protected sound transmission in phononic crystal. Acta Physica Sinica, 2019, 68(22): 227805. doi: 10.7498/aps.68.20191363
    [7] Geng Zhi-Guo, Peng Yu-Gui, Shen Ya-Xi, Zhao De-Gang, Zhu Xue-Feng. Topological acoustic transports in chiral sonic crystals. Acta Physica Sinica, 2019, 68(22): 227802. doi: 10.7498/aps.68.20191007
    [8] Xing Yu-Heng, Xu Xi-Fang, Zhang Li-Fa. Topological phonons and phonon Hall effects. Acta Physica Sinica, 2017, 66(22): 226601. doi: 10.7498/aps.66.226601
    [9] Ding Ling-Yun, Gong Zhong-Liang, Huang Ping. Energy dissipation mechanism of phononic friction. Acta Physica Sinica, 2009, 58(12): 8522-8528. doi: 10.7498/aps.58.8522
    [10] Jiang Fu-Shi, Zhao Cui-Lan. The phonon effect of qubit in quantum ring. Acta Physica Sinica, 2009, 58(10): 6786-6790. doi: 10.7498/aps.58.6786
    [11] Guo Zeng-Yuan, Cao Bing-Yang, Zhu Hong-Ye, Zhang Qing-Guang. State equation of phonon gas and conservation equations for phonon gas motion. Acta Physica Sinica, 2007, 56(6): 3306-3312. doi: 10.7498/aps.56.3306
    [12] Zhang Bin, Wang Yu-Fang, Jin Qing-Hua, Li Bao-Hui, Ding Da-Tong. Phonon dispersion relation calculations of armchair and zigzag carbon nanotubes. Acta Physica Sinica, 2005, 54(3): 1325-1329. doi: 10.7498/aps.54.1325
    [13] Zhang Hui-Peng, Jin Qing-Hua, Wang Yu-Fang, Li Bao-Hui, Ding Da-Tong. Effect of single-wall carbon nanotubes’chiral angle for the phonon frequency. Acta Physica Sinica, 2005, 54(9): 4279-4284. doi: 10.7498/aps.54.4279
    [14] LI WEN-BO. SOLVING THE EIGENVALUE EQUATION OF AN ISOTONIC OSCILLATOR BY PSEUDO-ANGULAR-MOMENTUM METHOD. Acta Physica Sinica, 2001, 50(12): 2356-2362. doi: 10.7498/aps.50.2356
    [15] CAO WEN-BING, A.D.RUDERT, J.MARTIN, H.ZACHARIAS, J.B.HALPERN. THE ANGULAR MOMENTUM ORIENTATION OF C2H221 AND ITS COLLISIONAL DECAY AND TRANSFER. Acta Physica Sinica, 1999, 48(5): 862-875. doi: 10.7498/aps.48.862
    [16] Duan Yi-Shi, Feng Shi-Xiang. . Acta Physica Sinica, 1995, 44(9): 1373-1381. doi: 10.7498/aps.44.1373
    [17] CHEN JIAN-HUA, CHENG XIANG-AI. . Acta Physica Sinica, 1995, 44(10): 1529-1533. doi: 10.7498/aps.44.1529
    [18] LIU FU-SUI, FAN XI-QING, LIU YAN-ZHANC, WANG HUAI-SHENG, RUAN YING-CHAO. EFFECT OF ELECTRON-MANY PHONON INTERACTION ON SCATTERING TIME. Acta Physica Sinica, 1989, 38(1): 154-158. doi: 10.7498/aps.38.154
    [19] LIU LIAN-SOU. COMPLEX ANGULAR MOMENTUM IN π-N SCATTERING. Acta Physica Sinica, 1965, 21(6): 1123-1131. doi: 10.7498/aps.21.1123
    [20] DAI YUAN-BEN. THE ANALYTICITY IN THE COMPLEX ANGULAR MOMENTUM VARIABLE OF THE S MATRIX ELEMENT FOR A CLASS OF NONLOCAL POTENTIALS. Acta Physica Sinica, 1964, 20(10): 947-953. doi: 10.7498/aps.20.947
Metrics
  • Abstract views:  16736
  • PDF Downloads:  1297
  • Cited By: 0
Publishing process
  • Received Date:  09 November 2017
  • Accepted Date:  24 January 2018
  • Published Online:  05 April 2018

/

返回文章
返回