-
Lithium-ion batteries (LIBs) have already become indispensable energy storage devices, as they can meet urgent requirements for higher energy and power density in the applications ranging from portable electronics to electric vehicles. However, in the process of charging and discharging of LIB, the diffusion-induced stress associated with inhomogeneous Li concentration in the electrode may cause the electrode material to damage, and then further degrade storage capacity and cycling performance of LIB. Therefore, it is important to quantitatively understand the mechanism relating to the stress evolution in electrode during electrochemical cycling, which will be conducive to developing effective methods of relieving the diffusion induced stress. In this work, a bilayer electrode model is proposed by taking into account Li diffusion, built-in stress, concentration-dependent material properties and elastoplastic deformation of current collector. Based on the established model, the influences of the possible plastic deformation in the current collector on the lithium diffusion and stress evolution of bilayer electrode during charging are investigated. The numerical results show that the plastic deformation of current collector can weaken the constraint between current collector and active layer, which leads to a smaller electrode curvature and more homogeneous lithium concentration in the active layer. The relaxation effect of the plastic deformation not only significantly relieves the stresses at the bottom and top surface of active layer, but also promotes the diffusion of lithium into active layer, which can improve the structural reliability of the electrode and increase the effective capacity of the active layer. Furthermore, the influences of the yield strength and plastic modulus of the current collector are discussed. The results indicate that the constraint between the current collector and active layer becomes weaker with reducing yield strength and plastic modulus of current collector, respectively. In other words, the further stress relaxation in the electrode indicates that the capacity can be enhanced upon reducing the yield strength and plastic modulus of current collector, respectively. Considering our results, it is expected that a bilayer electrode composed of the current collector with smaller mechanical strength enjoys simultaneous improvement in battery usable capacity and structural reliability. Consequently, the results of this paper provide a route to improving the cycle performance of bilayer lithium-ion battery electrode.
-
Keywords:
- lithium-ion batteries /
- bilayer electrode /
- diffusion induced stress /
- plastic deformation
[1] Yang H, Qu J M 2016 Sci. Technol. Rev. 34 88 (in Chinese) [杨辉, 曲建民 2016 科技导报 34 88]
[2] Tarascon J M, Armand M 2001 Nature 414 359
[3] Vetter J, Novák P, Wagner M R, Veit C, Möller K C, Besenhard K C, Winter M, Wohlfahrt-Mehrens M, Vogler C, Hammouche A 2005 J. Power Sources 147 269
[4] Zhang J Q, L B, Song Y C 2017 Chin. Quart. Mech. 38 14 (in Chinese) [张俊乾, 吕浡, 宋亦诚 2017 力学季刊 38 14]
[5] Cheng Y, Li J, Jia M, Tang Y W, Du S L, Ai L H, Yin B H, Ai L 2015 Acta Phys. Sin. 64 210202 (in Chinese) [程昀, 李劼, 贾明, 汤依伟, 杜双龙, 艾立华, 殷宝华, 艾亮 2015 物理学报 64 210202]
[6] Peng Y Z, Zhang K, Zheng B L, Li Y 2016 Acta Phys. Sin. 65 100201 (in Chinese) [彭颖吒, 张锴, 郑百林, 李泳 2016 物理学报 65 100201]
[7] Ma Z S, Zhou Y C, Liu J, Xue D F, Yang Q S, Pan Y 2013 Adv. Mech. 43 540 (in Chinese) [马增胜, 周益春, 刘军, 薛冬峰, 杨庆生, 潘勇 2013 力学进展 43 540]
[8] Choi N S, Yao Y, Cui Y, Cho J 2011 J. Mater. Chem. 21 9825
[9] Graetz J, Ahn C C, Yazami R, Fultz B 2004 J. Electrochem. Soc. 151 A698
[10] Yao Y, Mcdowell M T, Ryu I, Wu H, Liu N, Hu L, Nix W D, Cui Y 2011 Nano Lett. 11 2949
[11] Mahmood N, Tang T, Hou Y 2016 Adv. Energy Mater. 6 1600374
[12] Wu H, Cui Y 2012 Nano Today 7 414
[13] Zhang J Q, Lu B, Song Y C, Ji X 2012 J. Power Sources 209 220
[14] Song Y, Shao X, Guo Z, Zhang J 2013 J. Phys. D: Appl. Phys. 46 105307
[15] He K C, Hu H J, Song Y C, Guo Z S, Liu C, Zhang J 2014 J. Power Sources 248 517
[16] Hao F, Fang D N 2013 J. Power Sources 242 415
[17] Zhang X, Hao F, Chen H S, Fang D N 2015 Mech. Mater. 91 351
[18] Liu D, Chen W, Shen X 2016 Eur. J. Mech. A: Solid. 55 167
[19] Liu D, Chen W, Shen X 2017 Compos. Struct. 165 91
[20] Lu Y J, Che Q, Song X, Wang F H, Zhao X 2018 Scripta Mater. 150 164
[21] Song Y, Li Z, Zhang J 2014 J. Power Sources 263 22
[22] Li D, Li Z, Song Y, Zhang J 2016 Appl. Math. Mech. Engl. Ed. 37 659
[23] Yang B, He Y P, Irsa J, Lundgren C A, Ratchford J B, Zhao Y P 2012 J. Power Sources 204 168
[24] Yang F, Li J C M 2003 J. Appl. Phys. 93 9304
[25] Hsueh C H, Evans A G 1985 J. Am. Ceram. Soc. 68 241
[26] Lu Y J, Yang Y, Wang F H, Lou K, Zhao X 2016 Acta Phys. Sin. 65 098102 (in Chinese) [陆勇俊, 杨溢, 王峰会, 楼康, 赵翔 2016 物理学报 65 098102]
[27] Yang F Q 2012 Sci. China 55 955
[28] Guo Z S, Zhang T, Zhu J, Wang Y 2014 Comput. Mater. Sci. 94 218
[29] Larché F, Cahn J W 1978 Acta Metall. 21 53
[30] Larché F, Cahn J W 1985 Acta Metall. 33 331
[31] Zhang X, Wei S, Sastry A M 2007 J. Electrochem. Soc. 154 A910
[32] Shi D, Xiao X, Huang X, Kia H 2011 J. Power Sources 196 8129
[33] Xuan F Z, Shao S S, Wang Z, Tu S T 2009 J. Phys. D: Appl. Phys. 42 15401
[34] Zhao K, Pharr M, Cai S, Vlassak J J, Suo Z 2011 J. Am. Ceram. Soc. 94 s226
[35] Liu P, Sridhar N, Zhang Y W 2012 J. Appl. Phys. 112 A93
-
[1] Yang H, Qu J M 2016 Sci. Technol. Rev. 34 88 (in Chinese) [杨辉, 曲建民 2016 科技导报 34 88]
[2] Tarascon J M, Armand M 2001 Nature 414 359
[3] Vetter J, Novák P, Wagner M R, Veit C, Möller K C, Besenhard K C, Winter M, Wohlfahrt-Mehrens M, Vogler C, Hammouche A 2005 J. Power Sources 147 269
[4] Zhang J Q, L B, Song Y C 2017 Chin. Quart. Mech. 38 14 (in Chinese) [张俊乾, 吕浡, 宋亦诚 2017 力学季刊 38 14]
[5] Cheng Y, Li J, Jia M, Tang Y W, Du S L, Ai L H, Yin B H, Ai L 2015 Acta Phys. Sin. 64 210202 (in Chinese) [程昀, 李劼, 贾明, 汤依伟, 杜双龙, 艾立华, 殷宝华, 艾亮 2015 物理学报 64 210202]
[6] Peng Y Z, Zhang K, Zheng B L, Li Y 2016 Acta Phys. Sin. 65 100201 (in Chinese) [彭颖吒, 张锴, 郑百林, 李泳 2016 物理学报 65 100201]
[7] Ma Z S, Zhou Y C, Liu J, Xue D F, Yang Q S, Pan Y 2013 Adv. Mech. 43 540 (in Chinese) [马增胜, 周益春, 刘军, 薛冬峰, 杨庆生, 潘勇 2013 力学进展 43 540]
[8] Choi N S, Yao Y, Cui Y, Cho J 2011 J. Mater. Chem. 21 9825
[9] Graetz J, Ahn C C, Yazami R, Fultz B 2004 J. Electrochem. Soc. 151 A698
[10] Yao Y, Mcdowell M T, Ryu I, Wu H, Liu N, Hu L, Nix W D, Cui Y 2011 Nano Lett. 11 2949
[11] Mahmood N, Tang T, Hou Y 2016 Adv. Energy Mater. 6 1600374
[12] Wu H, Cui Y 2012 Nano Today 7 414
[13] Zhang J Q, Lu B, Song Y C, Ji X 2012 J. Power Sources 209 220
[14] Song Y, Shao X, Guo Z, Zhang J 2013 J. Phys. D: Appl. Phys. 46 105307
[15] He K C, Hu H J, Song Y C, Guo Z S, Liu C, Zhang J 2014 J. Power Sources 248 517
[16] Hao F, Fang D N 2013 J. Power Sources 242 415
[17] Zhang X, Hao F, Chen H S, Fang D N 2015 Mech. Mater. 91 351
[18] Liu D, Chen W, Shen X 2016 Eur. J. Mech. A: Solid. 55 167
[19] Liu D, Chen W, Shen X 2017 Compos. Struct. 165 91
[20] Lu Y J, Che Q, Song X, Wang F H, Zhao X 2018 Scripta Mater. 150 164
[21] Song Y, Li Z, Zhang J 2014 J. Power Sources 263 22
[22] Li D, Li Z, Song Y, Zhang J 2016 Appl. Math. Mech. Engl. Ed. 37 659
[23] Yang B, He Y P, Irsa J, Lundgren C A, Ratchford J B, Zhao Y P 2012 J. Power Sources 204 168
[24] Yang F, Li J C M 2003 J. Appl. Phys. 93 9304
[25] Hsueh C H, Evans A G 1985 J. Am. Ceram. Soc. 68 241
[26] Lu Y J, Yang Y, Wang F H, Lou K, Zhao X 2016 Acta Phys. Sin. 65 098102 (in Chinese) [陆勇俊, 杨溢, 王峰会, 楼康, 赵翔 2016 物理学报 65 098102]
[27] Yang F Q 2012 Sci. China 55 955
[28] Guo Z S, Zhang T, Zhu J, Wang Y 2014 Comput. Mater. Sci. 94 218
[29] Larché F, Cahn J W 1978 Acta Metall. 21 53
[30] Larché F, Cahn J W 1985 Acta Metall. 33 331
[31] Zhang X, Wei S, Sastry A M 2007 J. Electrochem. Soc. 154 A910
[32] Shi D, Xiao X, Huang X, Kia H 2011 J. Power Sources 196 8129
[33] Xuan F Z, Shao S S, Wang Z, Tu S T 2009 J. Phys. D: Appl. Phys. 42 15401
[34] Zhao K, Pharr M, Cai S, Vlassak J J, Suo Z 2011 J. Am. Ceram. Soc. 94 s226
[35] Liu P, Sridhar N, Zhang Y W 2012 J. Appl. Phys. 112 A93
Catalog
Metrics
- Abstract views: 8397
- PDF Downloads: 302
- Cited By: 0