搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

晶体硅太阳电池双层电极优化分析与实验研究

李涛 周春兰 刘振刚 赵雷 李海玲 刁宏伟 王文静

引用本文:
Citation:

晶体硅太阳电池双层电极优化分析与实验研究

李涛, 周春兰, 刘振刚, 赵雷, 李海玲, 刁宏伟, 王文静

Optimized analysis and experimental study for two-layer contact of crystalline silicon solar cells

Li Tao, Zhou Chun-Lan, Liu Zhen-Gang, Zhao Lei, Li Hai-Ling, Diao Hong-Wei, Wang Wen-Jing
PDF
导出引用
  • 相对于单层电极结构,优化的前表面双层电极能够明显减小功率损失,改善晶体硅太阳电池的电学特性.本文对晶体硅太阳电池的双层电极进行了优化分析和实验研究.通过扫描电子显微镜观测将双层电极的截面抽象为更接近于实际的半椭圆型,建立了太阳电池前表面的双层电极模型,理论分析了双层电极的电学损失和光学损失.结合丝网印刷后光诱导电镀太阳电池的实验,得到了理论和实验上的最优化光诱导电镀增厚电极厚度与丝网印刷电极宽度的关系.所得到的理论和实验结果符合良好.由于并不涉及电极制备的具体技术,双层电极理论模型普遍适用于多种类型的双层电极结构.
    Compared with single-layer contact, optimized two-layer contact of front side could diminish power losses distinctly and improve the electrical performance of crystalline silicon solar cell. In this paper, the optimized analysis and experimental study for two-layer contact of crystalline silicon solar cell are carried out. The model of two-layer contact is established by abstracting the cross-section of two-layer contact into semi-elliptical shape closer to the realistic situation according to the SEM observation . The electrical losses and the optical losses of two-layer contact are analyzed in theory. In combination with experimental screen-printed contact thickened by light-induced electroplating solar cell, the relationship between the optimum thickening contact thickness by light-induced electroplating and the screen-printed contact width is achieved in theory and experiment. The corresponding theory and experimental results are in good agreement with each other. Due to involving no concrete technology of contact preparation, the theoretical model of two-layer contact is generally appticable for many types of two-layer contact structurs in consequence.
    • 基金项目: 中国科学院知识创新工程重要方向项目(批准号: KGCX2-YW-382)和国家高技术研究发展计划(批准号: 2007AA05Z437)资助的课题.
    • Funds: Project supported by the Main Direction of Knowledge Innovation Program of the Chinese Academy of Science (Grant No. KGCX2-YW-382), and the National High Technology Research and Development Program of China (Grant No. 2007AA05Z437).
    [1]

    Gu C, Qu S B, Pei Z B, Xu Z, Liu J, Gu W 2011 Chin. Phys. B 20 017801

    [2]

    Hua Z 2005 Chin. Phys. B 14 2019

    [3]

    Glunz S, Mette A, Aleman M, Richter P, Filipovic A, Willeke G 2006 Proceedings of the 21st European Photovoltaic Solar Energy Conference Dresden, Germany, 2006 pp8–11

    [4]

    Mette A, Schetter C, Wissen D, Lust S, Glunz S, Willeke G 2006 Proceedings of the 4th IEEE World Conference on Photovoltaic Energy Conversion Waikoloa, Hawaii, 2006 pp1056–1059

    [5]

    Pysch D, Mette A, Filipovic A, Glunz S 2009 Prog. Photovolt: Res. Appl. 17 101

    [6]

    Hyung Lee J, Hyun Lee Y, Yong Ahn J, Jeong J 2010 Sol. Energy Mater. Sol. Cells 95 22

    [7]

    Erath D, Filipovic A, Retzlaff M, Goetz A K, Clement F, Biro D, Preu R 2010 Sol. Energy Mater. Sol. Cells 94 57

    [8]

    Lennon A, Utama R, Lenio M, Ho-Baillie A, Kuepper N,Wenham S 2008 Sol. Energy Mater. Sol. Cells 92 1410

    [9]

    Curtis C, van Hest M, Miedaner A, Kaydanova T, Smith L, Ginley D 2007 Proceedings of the 22nd European Photovoltaic Solar Energy Conference Milan, Italy, pp1039–1394

    [10]

    Shaheen S, Radspinner R, Peyghambarian N, Jabbour G 2009 Appl. Phys. Lett. 79 2996

    [11]

    Hörteis M, Mette A, Richter P, Fidorra F, Glunz S 2007 Proceedings of the 22nd European Photovoltaic Solar Energy Conference Milan, Italy, pp1039–1042

    [12]

    Mette A, Richter P, Hörteis M, Glunz S 2007 Prog. Photovolt: Res. Appl. 15 621

    [13]

    Hörteis M, Bartsch J, Binder S, Filipovic A, Merkel J, Radtke V, Glunz S 2010 Prog. Photovolt: Res. Appl. 18 240

    [14]

    Horteis M, Glunz S 2008 Prog. Photovolt: Res. Appl. 16 555

    [15]

    Hyung Lee J, Hyun Lee Y, Yong Ahn J, Jeong J W 2011 Sol. Energy Mater. Sol. Cells 95 22

    [16]

    Guo H, Zhang Y M, Zhang Y M 2006 Chin. Phys. 15 2142

    [17]

    Wand Y Y, Guo H, Wang Y H, Zhang Y M, Qiao D Y, Zhang Y M 2009 Chin. Phys. B 18 4470

    [18]

    Zhang L Z, Zhang Y M, Zhang Y M, Han C, Ma Y J 2009 Chin. Phys. B 18 3490

    [19]

    Guo H, Zhang Y M, Qiao D Y, Sun L, Zhang Y M 2007 Chin. Phys. 16 1753

    [20]

    Wang S G, Zhang Y, Zhang Y M, Zhang Y M 2010 Chin. Phys. B 19 017204

    [21]

    Huang J Y, Fan G H, Zhang S W, Niu Q L, Li S T, Cao J X, Su J, Zhang Y 2010 Chin. Phys. B 19 047205

    [22]

    Liu G, Liu M, Wang H, Shang L W, Ji Z Y, Liu X H, Liu J 2009 Chin. Phys. B 18 3530

    [23]

    Li C W, Zhu Y X, Shen G D, Zhang Y H, Qin Y, Gao W, Jiang W J, Zhou D S 2010 Chin. Phys. B 19 097305

    [24]

    Blakers A 2009 J. Appl. Phys. 71 5237

    [25]

    Woehl R, Hörteis M, Glunz S W 2008 Adv. OptoElectron. 1-7

    [26]

    Nguyen A, Fioramonti A, Morrissey D, Efstathiadis H, Zhouying Z, Haldar P 2009 34th IEEE Photovoltaic Specialists Conference Philadelphia PA, 2009 pp312–315

    [27]

    Meier D, Schroder D 2005 IEEE Trans. Electron Dev. 31 647

    [28]

    Hilali M, Rohatgi A, To B 2004 14th Workshop on Crystalline Silicon Solar Cells and Modules Winter Park, Colorado, pp1–11

    [29]

    Wang N N, Yu J S, Zang Y, Jiang Y D 2010 Chin. Phys. B 19 038602

    [30]

    Zhou Y H, Yang Z F, Wu W C, Xia H J, Wen S P, Tian W J 2007 Chin. Phys. 16 2136

    [31]

    Liu X D, Xu Z, Zhang F J, Zhao S L, Zhang T H, Gong W, Song J L, Kong C, Yan G, Xu X R 2010 Chin. Phys. B 19 118601

  • [1]

    Gu C, Qu S B, Pei Z B, Xu Z, Liu J, Gu W 2011 Chin. Phys. B 20 017801

    [2]

    Hua Z 2005 Chin. Phys. B 14 2019

    [3]

    Glunz S, Mette A, Aleman M, Richter P, Filipovic A, Willeke G 2006 Proceedings of the 21st European Photovoltaic Solar Energy Conference Dresden, Germany, 2006 pp8–11

    [4]

    Mette A, Schetter C, Wissen D, Lust S, Glunz S, Willeke G 2006 Proceedings of the 4th IEEE World Conference on Photovoltaic Energy Conversion Waikoloa, Hawaii, 2006 pp1056–1059

    [5]

    Pysch D, Mette A, Filipovic A, Glunz S 2009 Prog. Photovolt: Res. Appl. 17 101

    [6]

    Hyung Lee J, Hyun Lee Y, Yong Ahn J, Jeong J 2010 Sol. Energy Mater. Sol. Cells 95 22

    [7]

    Erath D, Filipovic A, Retzlaff M, Goetz A K, Clement F, Biro D, Preu R 2010 Sol. Energy Mater. Sol. Cells 94 57

    [8]

    Lennon A, Utama R, Lenio M, Ho-Baillie A, Kuepper N,Wenham S 2008 Sol. Energy Mater. Sol. Cells 92 1410

    [9]

    Curtis C, van Hest M, Miedaner A, Kaydanova T, Smith L, Ginley D 2007 Proceedings of the 22nd European Photovoltaic Solar Energy Conference Milan, Italy, pp1039–1394

    [10]

    Shaheen S, Radspinner R, Peyghambarian N, Jabbour G 2009 Appl. Phys. Lett. 79 2996

    [11]

    Hörteis M, Mette A, Richter P, Fidorra F, Glunz S 2007 Proceedings of the 22nd European Photovoltaic Solar Energy Conference Milan, Italy, pp1039–1042

    [12]

    Mette A, Richter P, Hörteis M, Glunz S 2007 Prog. Photovolt: Res. Appl. 15 621

    [13]

    Hörteis M, Bartsch J, Binder S, Filipovic A, Merkel J, Radtke V, Glunz S 2010 Prog. Photovolt: Res. Appl. 18 240

    [14]

    Horteis M, Glunz S 2008 Prog. Photovolt: Res. Appl. 16 555

    [15]

    Hyung Lee J, Hyun Lee Y, Yong Ahn J, Jeong J W 2011 Sol. Energy Mater. Sol. Cells 95 22

    [16]

    Guo H, Zhang Y M, Zhang Y M 2006 Chin. Phys. 15 2142

    [17]

    Wand Y Y, Guo H, Wang Y H, Zhang Y M, Qiao D Y, Zhang Y M 2009 Chin. Phys. B 18 4470

    [18]

    Zhang L Z, Zhang Y M, Zhang Y M, Han C, Ma Y J 2009 Chin. Phys. B 18 3490

    [19]

    Guo H, Zhang Y M, Qiao D Y, Sun L, Zhang Y M 2007 Chin. Phys. 16 1753

    [20]

    Wang S G, Zhang Y, Zhang Y M, Zhang Y M 2010 Chin. Phys. B 19 017204

    [21]

    Huang J Y, Fan G H, Zhang S W, Niu Q L, Li S T, Cao J X, Su J, Zhang Y 2010 Chin. Phys. B 19 047205

    [22]

    Liu G, Liu M, Wang H, Shang L W, Ji Z Y, Liu X H, Liu J 2009 Chin. Phys. B 18 3530

    [23]

    Li C W, Zhu Y X, Shen G D, Zhang Y H, Qin Y, Gao W, Jiang W J, Zhou D S 2010 Chin. Phys. B 19 097305

    [24]

    Blakers A 2009 J. Appl. Phys. 71 5237

    [25]

    Woehl R, Hörteis M, Glunz S W 2008 Adv. OptoElectron. 1-7

    [26]

    Nguyen A, Fioramonti A, Morrissey D, Efstathiadis H, Zhouying Z, Haldar P 2009 34th IEEE Photovoltaic Specialists Conference Philadelphia PA, 2009 pp312–315

    [27]

    Meier D, Schroder D 2005 IEEE Trans. Electron Dev. 31 647

    [28]

    Hilali M, Rohatgi A, To B 2004 14th Workshop on Crystalline Silicon Solar Cells and Modules Winter Park, Colorado, pp1–11

    [29]

    Wang N N, Yu J S, Zang Y, Jiang Y D 2010 Chin. Phys. B 19 038602

    [30]

    Zhou Y H, Yang Z F, Wu W C, Xia H J, Wen S P, Tian W J 2007 Chin. Phys. 16 2136

    [31]

    Liu X D, Xu Z, Zhang F J, Zhao S L, Zhang T H, Gong W, Song J L, Kong C, Yan G, Xu X R 2010 Chin. Phys. B 19 118601

  • [1] 季阳, 陈美玲, 黄汛, 吴永政, 兰冰. 不同光学网络结构玻色采样发生随机光子损失的模拟研究. 物理学报, 2022, 71(19): 190301. doi: 10.7498/aps.71.20220331
    [2] 徐婷, 王子帅, 李炫华, 沙威. 基于等效电路模型的钙钛矿太阳电池效率损失机理分析. 物理学报, 2021, 70(9): 098801. doi: 10.7498/aps.70.20201975
    [3] 陈锋, 郑娜, 许海波. 质子照相中基于能量损失的密度重建. 物理学报, 2018, 67(20): 206101. doi: 10.7498/aps.67.20181039
    [4] 宋旭, 陆勇俊, 石明亮, 赵翔, 王峰会. 集流体塑性变形对锂离子电池双层电极中锂扩散和应力的影响. 物理学报, 2018, 67(14): 140201. doi: 10.7498/aps.67.20180148
    [5] 牟茂淋, 刘宇, 王中天, 陈少永, 唐昌建. 托卡马克装置中高能离子的直接损失. 物理学报, 2014, 63(16): 165201. doi: 10.7498/aps.63.165201
    [6] 鲁彦霞, 谢安平, 李小华, 向东, 路兴强, 李新霞, 黄千红. Cq+(q=14)与He,Ne,Ar碰撞的电子损失截面测量与研究. 物理学报, 2011, 60(8): 083401. doi: 10.7498/aps.60.083401
    [7] 李涛, 周春兰, 宋洋, 杨海峰, 郜志华, 段野, 李友忠, 刘振刚, 王文静. 晶体硅太阳电池金属电极光学损失的理论分析与实验研究. 物理学报, 2011, 60(9): 098801. doi: 10.7498/aps.60.098801
    [8] 黎雪刚, 杨坤德, 张同伟, 邱海宾. 基于拖曳倾斜线列阵的海底反射损失提取方法. 物理学报, 2009, 58(11): 7741-7749. doi: 10.7498/aps.58.7741
    [9] 陈雁萍, 王传兵, 周国成. 损失锥-束流分布电子驱动的回旋激射不稳定性. 物理学报, 2005, 54(7): 3221-3227. doi: 10.7498/aps.54.3221
    [10] 谢国锋, 王德武, 应纯同. 计及溅射损失的平行板静电场法离子引出和收集. 物理学报, 2005, 54(4): 1543-1551. doi: 10.7498/aps.54.1543
    [11] 谢国锋, 王德武, 应纯同. 考虑溅射损失的RF共振法离子引出和收集. 物理学报, 2005, 54(5): 2147-2152. doi: 10.7498/aps.54.2147
    [12] 王惠, 蓝文广, 林位株, 莫党. 基于高聚物光诱导激子漂白的无腔光学双稳态. 物理学报, 1997, 46(8): 1493-1499. doi: 10.7498/aps.46.1493
    [13] 张强基, 陈乃群, 华中一. 3d 金属电离损失谱研究. 物理学报, 1991, 40(8): 1344-1348. doi: 10.7498/aps.40.1344
    [14] 李跃林, 徐至展, 陈时胜. Al等离子体辐射损失的数值研究. 物理学报, 1990, 39(12): 1915-1920. doi: 10.7498/aps.39.1915
    [15] 杨瑞青, 陆晓佳, 蔡建华. 半导体超晶格的介电函数倒数与快速电子能量损失谱. 物理学报, 1989, 38(3): 492-496. doi: 10.7498/aps.38.492
    [16] 郭世宠, 沈解伍, 蔡诗东. 温离子对动力迥旋损失锥不稳定性的作用. 物理学报, 1988, 37(12): 1993-2003. doi: 10.7498/aps.37.1993
    [17] 费璐, 郑宇, 张强基, 黄金林, 华中一. 多晶硼和含硼金属玻璃的表面广延能量损失精细结构研究. 物理学报, 1987, 36(9): 1213-1218. doi: 10.7498/aps.36.1213
    [18] 陈雁萍, 张淳沅. 粒子轨道损失对低杂波离子随机加热的影响. 物理学报, 1984, 33(4): 457-464. doi: 10.7498/aps.33.457
    [19] 肖振喜, 周德隣. 电子经过介质由于介质被极化影响能量损失的研究. 物理学报, 1960, 16(2): 98-106. doi: 10.7498/aps.16.98
    [20] 邓稼先, 徐建铭. 辐射损失对加速器中自由振动的影响. 物理学报, 1957, 13(2): 115-129. doi: 10.7498/aps.13.115
计量
  • 文章访问数:  6204
  • PDF下载量:  1043
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-02-27
  • 修回日期:  2011-05-30
  • 刊出日期:  2012-03-15

/

返回文章
返回