Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Chaotic analysis of fractional Willis delayed aneurysm system

Gao Fei Hu Dao-Nan Tong Heng-Qing Wang Chuan-Mei

Citation:

Chaotic analysis of fractional Willis delayed aneurysm system

Gao Fei, Hu Dao-Nan, Tong Heng-Qing, Wang Chuan-Mei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The dynamic system of Willis aneurysm (WAS) has played an important role in theoretical and clinical research of cerebral aneurysms. Fractional differential is an effective mathematical tool that can describe the cerebral aneurysm system accurately and profoundly. However, the existing fractional Willis aneurysm system (FWAS) cannot describe the delayed aneurysm rupture of unknown cause in reality. Therefore, by introducing the time-delay factors into the existing fractional Willis aneurysm system as a rational extension, a new fractional Willis aneurysm system with time-delay (FWASTD) is proposed in this paper.First, FWASTD is introduced in the context, and the comparison of time sequences map between FWAS and FWASTD proves that FWASTD is feasible in the depiction of time-delay situations. The bifurcation diagram and the largest Lyapunov exponent diagram as well as the phase diagram of fractional order also confirm the chaotic characteristics of the FWASTD.Then, the classical analysis methods in chaotic dynamics, such as time series diagram, phase diagram and Poincar section are used to analyze FWASTD in detail. When studying the diagrams of time-delay factors for the important physiological parameters of the system, we find that blood flow resistance coefficient can exert a remarkable effect on the system stability under time-delay. Besides, the experimental results show that the FWASTD becomes stable with the increase of blood flow resistance under a certain condition. Usually, promoting thrombosis is a kind of adjunctive therapy in clinic for cerebral aneurysm. The results of this part can accord with the treatment in clinic and has great significance in clinical diagnosis.Finally, as the chaotic state of the time-delay system indicates that cerebral aneurysm is in a dangerous situation, the primary task of the control for this new system is to achieve stability rather than synchronization. The stability theory of fractional time-delayed system is adopted in a strict proof of the uniqueness of solution for the FWASTD. To make FWASTD stable, a corresponding linear controller is designed based on the stability theory of fractional order delay system. The numerical simulation indicates that the linear controller can control the blood flow velocity and speed up the periodic fluctuation within a small range, which illustrates that it is not easy to rupture the cerebral aneurysm. We also make self-synchronization control between FWASTD and FWAS just in case that the coefficients of the system are not clear.The research results in this paper, to some extent, can serve as theoretical guidance for the clinical diagnosis and the treatment of aneurysm.
      Corresponding author: Gao Fei, hgaofei@gmail.com
    • Funds: Project supported by the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91324201), the Fundamental Research Funds for the Central Universities, China (Grant No. 2018IB017), the Natural Science Foundation of Hubei Province, China (Grant No. 2014CFB865), and the Humanity and Social Science Youth foundation of Ministry of Education of China (Grant No. 14YJCZH143).
    [1]

    Lan Q 2015 Chin. J. Neurosurg. 31 541 (in Chinese) [兰青 2015 中华神经外科杂志 31 541]

    [2]

    Liang S K, Jiang C H 2016 Chin. J. Neurosurg. 32 1071 (in Chinese) [梁士凯, 姜除寒 2016 中华神经外科杂志 32 1071]

    [3]

    Liu A H 2017 Chin. J. Stroke 12 850 (in Chinese) [刘爱华 2017 中国卒中杂志 12 850]

    [4]

    Fiorella D, Woo H H, Albuquerque F C, Nelson P K 2008 Neurosurgery 62 1115

    [5]

    Liu J, Jing L K, Wang C, Paliwal N, Wang S Z, Zhang Y, Xiang J P, Siddiqui A H, Meng H, Yang X J 2016 J. Neurointerv. Surg. 8 1140

    [6]

    Zhang Y, Yang X J 2016 Chin. J. Cerebrovasc. Dis. 7 372 (in Chinese) [张莹, 杨新健 2016 中国脑血管病杂志 7 372]

    [7]

    Radaelli A G, Augsburger L, Cebral J R, Ohta M, Rufenacht D A, Balossino R, Benndorf G, Hose D R, Marzo A, Metcalfe R, Mortier P, Mut F, Reymond P, Socci L, Verhegghe B, Frangi A F 2008 J. Bio. 41 2069

    [8]

    Connolly J E S, Rabinstein A A, Carhuapoma J R, Derdeyn C P, Dion J, Higashida R T, Hoh B L, Kirkness C J, Naidech A M, Ogilvy C S, Patel A B, Thompson B G, Vespa P, Council A H A S, Int C C R, Nursing C C, Anesthes C C S, Cardiology C C 2012 Stroke 43 1711

    [9]

    Gonzalez C F, Cho Y I, Ortega H V, Moret J 1992 Am. J. Neuroradiol. 13 181

    [10]

    Dai X, Qiao A K 2016 J. Med. Biomech. 31 461 (in Chinese) [戴璇, 乔爱科 2016 医用生物力学 31 461]

    [11]

    Austin G 1971 Math. Biosci. 11 163

    [12]

    Cao J D, Liu T Y 1993 J. Biomath. 8 9 (in Chinese) [曹进德, 刘天一 1993 生物数学学报 8 9]

    [13]

    Yang C H, Zhu S M 2003 Acta Sci. Nat. Univ. Sunyatseni 43 1 (in Chinese) [杨翠红, 朱思铭 2003 中山大学学报(自然科学版) 43 1]

    [14]

    Gu Y F, Xiao J 2014 Acta Phys. Sin. 63 160501 (in Chinese) [古元凤, 肖剑 2014 物理学报 63 160501]

    [15]

    Li Y M, Yu S 2008 J. Biomath. 23 235 (in Chinese) [李医民, 于霜 2008 生物数学学报 23 235]

    [16]

    Sun M H 2016 M. S. Thesis (Chongqing: University of Chongqing) (in Chinese) [孙梦晗 2016 硕士学位论文 (重庆: 重庆大学)]

    [17]

    Gao F, Li T, Tong H Q, Ou Z L 2016 Acta Phys. Sin. 65 230502 (in Chinese) [高飞, 李腾, 童恒庆, 欧卓玲 2016 物理学报 65 230502]

    [18]

    Lu K Q, Liu J X 2009 Physics 38 453 (in Chinese) [陆坤权, 刘寄星 2009 物理 38 453]

    [19]

    Zhu K Q 2009 Mech. Pract. 31 104 (in Chinese) [朱克勤 2009 力学与实践 31 104]

    [20]

    Ahmed E, El-Sayed A M A, El-Saka H A A 2007 J. Math. Anal. Appl. 325 542

    [21]

    Dokoumetzidis A, Macheras P 2009 J. Pharmacokinet. Pharmacodyn. 36 165

    [22]

    Liang Y, Wang X Y 2013 Acta Phys. Sin. 62 018901 (in Chinese) [梁义, 王兴元 2013 物理学报 62 018901]

    [23]

    Ouyang C, Lin W T, Cheng R J, Mo J Q 2013 Acta Phys. Sin. 62 060201 (in Chinese) [欧阳成, 林万涛, 程荣军, 莫嘉琪 2013 物理学报 62 060201]

    [24]

    Podlubny I 1999 Fractional Differential Equations (New York: Academic Press) p41

    [25]

    Huo R, Wang X L, Wu G R 2014 J. Inner Mongolia Agric. Univ. (Nat. Sci. Edn.) 35 167 (in Chinese) [霍冉, 王晓丽, 吴国荣 2014 内蒙古农业大学学报 35 167]

    [26]

    Hu J, Lu G, Zhang S, Zhao L 2015 Commun. Nonlinear Sci. 20 905

    [27]

    Bhalekar S, Daftardar-Gejji V 2010 Commun. Nonlinear Sci. 15 2178

    [28]

    Diethelm K, Neville F 2002 Nonlinear Dynam. 29 3

    [29]

    Guan M, Shi H, Zhang G 2017 Chin. J. Cerebrovasc Dis. 14 46 (in Chinese) [关明浩, 史怀璋, 张广 2017 中国脑血管病杂志 14 46]

  • [1]

    Lan Q 2015 Chin. J. Neurosurg. 31 541 (in Chinese) [兰青 2015 中华神经外科杂志 31 541]

    [2]

    Liang S K, Jiang C H 2016 Chin. J. Neurosurg. 32 1071 (in Chinese) [梁士凯, 姜除寒 2016 中华神经外科杂志 32 1071]

    [3]

    Liu A H 2017 Chin. J. Stroke 12 850 (in Chinese) [刘爱华 2017 中国卒中杂志 12 850]

    [4]

    Fiorella D, Woo H H, Albuquerque F C, Nelson P K 2008 Neurosurgery 62 1115

    [5]

    Liu J, Jing L K, Wang C, Paliwal N, Wang S Z, Zhang Y, Xiang J P, Siddiqui A H, Meng H, Yang X J 2016 J. Neurointerv. Surg. 8 1140

    [6]

    Zhang Y, Yang X J 2016 Chin. J. Cerebrovasc. Dis. 7 372 (in Chinese) [张莹, 杨新健 2016 中国脑血管病杂志 7 372]

    [7]

    Radaelli A G, Augsburger L, Cebral J R, Ohta M, Rufenacht D A, Balossino R, Benndorf G, Hose D R, Marzo A, Metcalfe R, Mortier P, Mut F, Reymond P, Socci L, Verhegghe B, Frangi A F 2008 J. Bio. 41 2069

    [8]

    Connolly J E S, Rabinstein A A, Carhuapoma J R, Derdeyn C P, Dion J, Higashida R T, Hoh B L, Kirkness C J, Naidech A M, Ogilvy C S, Patel A B, Thompson B G, Vespa P, Council A H A S, Int C C R, Nursing C C, Anesthes C C S, Cardiology C C 2012 Stroke 43 1711

    [9]

    Gonzalez C F, Cho Y I, Ortega H V, Moret J 1992 Am. J. Neuroradiol. 13 181

    [10]

    Dai X, Qiao A K 2016 J. Med. Biomech. 31 461 (in Chinese) [戴璇, 乔爱科 2016 医用生物力学 31 461]

    [11]

    Austin G 1971 Math. Biosci. 11 163

    [12]

    Cao J D, Liu T Y 1993 J. Biomath. 8 9 (in Chinese) [曹进德, 刘天一 1993 生物数学学报 8 9]

    [13]

    Yang C H, Zhu S M 2003 Acta Sci. Nat. Univ. Sunyatseni 43 1 (in Chinese) [杨翠红, 朱思铭 2003 中山大学学报(自然科学版) 43 1]

    [14]

    Gu Y F, Xiao J 2014 Acta Phys. Sin. 63 160501 (in Chinese) [古元凤, 肖剑 2014 物理学报 63 160501]

    [15]

    Li Y M, Yu S 2008 J. Biomath. 23 235 (in Chinese) [李医民, 于霜 2008 生物数学学报 23 235]

    [16]

    Sun M H 2016 M. S. Thesis (Chongqing: University of Chongqing) (in Chinese) [孙梦晗 2016 硕士学位论文 (重庆: 重庆大学)]

    [17]

    Gao F, Li T, Tong H Q, Ou Z L 2016 Acta Phys. Sin. 65 230502 (in Chinese) [高飞, 李腾, 童恒庆, 欧卓玲 2016 物理学报 65 230502]

    [18]

    Lu K Q, Liu J X 2009 Physics 38 453 (in Chinese) [陆坤权, 刘寄星 2009 物理 38 453]

    [19]

    Zhu K Q 2009 Mech. Pract. 31 104 (in Chinese) [朱克勤 2009 力学与实践 31 104]

    [20]

    Ahmed E, El-Sayed A M A, El-Saka H A A 2007 J. Math. Anal. Appl. 325 542

    [21]

    Dokoumetzidis A, Macheras P 2009 J. Pharmacokinet. Pharmacodyn. 36 165

    [22]

    Liang Y, Wang X Y 2013 Acta Phys. Sin. 62 018901 (in Chinese) [梁义, 王兴元 2013 物理学报 62 018901]

    [23]

    Ouyang C, Lin W T, Cheng R J, Mo J Q 2013 Acta Phys. Sin. 62 060201 (in Chinese) [欧阳成, 林万涛, 程荣军, 莫嘉琪 2013 物理学报 62 060201]

    [24]

    Podlubny I 1999 Fractional Differential Equations (New York: Academic Press) p41

    [25]

    Huo R, Wang X L, Wu G R 2014 J. Inner Mongolia Agric. Univ. (Nat. Sci. Edn.) 35 167 (in Chinese) [霍冉, 王晓丽, 吴国荣 2014 内蒙古农业大学学报 35 167]

    [26]

    Hu J, Lu G, Zhang S, Zhao L 2015 Commun. Nonlinear Sci. 20 905

    [27]

    Bhalekar S, Daftardar-Gejji V 2010 Commun. Nonlinear Sci. 15 2178

    [28]

    Diethelm K, Neville F 2002 Nonlinear Dynam. 29 3

    [29]

    Guan M, Shi H, Zhang G 2017 Chin. J. Cerebrovasc Dis. 14 46 (in Chinese) [关明浩, 史怀璋, 张广 2017 中国脑血管病杂志 14 46]

  • [1] Gao Fei, Li Teng, Tong Heng-Qing, Ou Zhuo-Ling. Chaotic dynamics of the fractional Willis aneurysm system and its control. Acta Physica Sinica, 2016, 65(23): 230502. doi: 10.7498/aps.65.230502
    [2] Li Rui, Zhang Guang-Jun, Yao Hong, Zhu Tao, Zhang Zhi-Hao. Generalized dislocated lag projective synchronization of fractional chaotic systems with fully uncertain parameters. Acta Physica Sinica, 2014, 63(23): 230501. doi: 10.7498/aps.63.230501
    [3] Wang Bin, Wu Chao, Zhu De-Lan. A new double-wing fractional-order chaotic system and its synchronization by sliding mode. Acta Physica Sinica, 2013, 62(23): 230506. doi: 10.7498/aps.62.230506
    [4] Shang Hui-Lin. Controlling fractal erosion of safe basins in a Helmholtz oscillator by delayed position feedback. Acta Physica Sinica, 2011, 60(7): 070501. doi: 10.7498/aps.60.070501
    [5] Zhang Li-Ping, Xu Min, Wang Hui-Nan. Hybrid control of bifurcation in a predator-prey system with three delays. Acta Physica Sinica, 2011, 60(1): 010506. doi: 10.7498/aps.60.010506
    [6] Wang Rui, Yang Hong. Fractional order chaotic system control based on feedback and multiple least square support vector machines. Acta Physica Sinica, 2011, 60(7): 070508. doi: 10.7498/aps.60.070508
    [7] Liu Fu-Cai, Li Jun-Yi, Zang Xiu-Feng. Anti-synchronization of different hyperchaotic systems based on adaptive active control and fractional sliding mode control. Acta Physica Sinica, 2011, 60(3): 030504. doi: 10.7498/aps.60.030504
    [8] Zhao Ling-Dong, Hu Jian-Bing, Bao Zhi-Hua, Zhang Guo-An, Xu Chen, Zhang Shi-Bing. A finite-time stable theorem about fractional systems and finite-time synchronizing fractional super chaotic Lorenz systems. Acta Physica Sinica, 2011, 60(10): 100507. doi: 10.7498/aps.60.100507
    [9] Hu Shou-Song, Tao Hong-Feng. Time-delayed generalized projective synchronization of piecewise chaotic system with unknown parameters. Acta Physica Sinica, 2011, 60(1): 010514. doi: 10.7498/aps.60.010514
    [10] Hu Jian-Bing, Zhang Guo-An, Zhao Ling-Dong, Zeng Jin-Quan. Intermittent synchronizing fractional unified chaotic systems. Acta Physica Sinica, 2011, 60(6): 060504. doi: 10.7498/aps.60.060504
    [11] Huang Li-Lian, He Shao-Jie. Stability of fractional state space system and its application to fractional order chaotic system. Acta Physica Sinica, 2011, 60(4): 044703. doi: 10.7498/aps.60.044703
    [12] Zhao Ling-Dong, Hu Jian-Bing, Liu Xu-Hui. Adaptive tracking control and synchronization of fractional hyper-chaotic Lorenz system with unknown parameters. Acta Physica Sinica, 2010, 59(4): 2305-2309. doi: 10.7498/aps.59.2305
    [13] Yan Xiao-Mei, Liu Ding. Control of fractional order chaotic system based on least square support vector machines. Acta Physica Sinica, 2010, 59(5): 3043-3048. doi: 10.7498/aps.59.3043
    [14] Hu Jian-Bing, Han Yan, Zhao Ling-Dong. Adaptive synchronization between different fractional hyperchaotic systems with uncertain parameters. Acta Physica Sinica, 2009, 58(3): 1441-1445. doi: 10.7498/aps.58.1441
    [15] Zhang Ruo-Xun, Yang Shi-Ping. Chaos in the fractional-order conjugate Chen system and its circuit emulation. Acta Physica Sinica, 2009, 58(5): 2957-2962. doi: 10.7498/aps.58.2957
    [16] Hu Jian-Bing, Han Yan, Zhao Ling-Dong. A novel stablility theorem for fractional systems and its applying in synchronizing fractional chaotic system based on back-stepping approach. Acta Physica Sinica, 2009, 58(4): 2235-2239. doi: 10.7498/aps.58.2235
    [17] Chen Xiang-Rong, Liu Chong-Xin, Li Yong-Xun. Nonlinear observer based full-state projective synchronization for a class of fractional-order chaotic system. Acta Physica Sinica, 2008, 57(3): 1453-1457. doi: 10.7498/aps.57.1453
    [18] Ma Yue-Chao, Huang Li-Fang, Zhang Qing-Ling. Robust guaranteed cost H∞ control for uncertain time-varying delay system. Acta Physica Sinica, 2007, 56(7): 3744-3752. doi: 10.7498/aps.56.3744
    [19] Controlling projective synchronization in coupled fractional order chaotic Chen system. Acta Physica Sinica, 2007, 56(12): 6815-6819. doi: 10.7498/aps.56.6815
    [20] Wang Fa-Qiang, Liu Chong-Xin. Study on the critical chaotic system with fractional order and circuit experiment. Acta Physica Sinica, 2006, 55(8): 3922-3927. doi: 10.7498/aps.55.3922
Metrics
  • Abstract views:  7314
  • PDF Downloads:  138
  • Cited By: 0
Publishing process
  • Received Date:  02 February 2018
  • Accepted Date:  16 April 2018
  • Published Online:  05 August 2018

/

返回文章
返回