Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Preparation of Mg1+yAl2-xO4:xMn4+, yMg2+ deep red phosphor and their optical properties

Peng Ling-Ling Cao Shi-Xiu Zhao Cong Liu Bi-Tao Han Tao Li Feng Li Xiao-Min

Citation:

Preparation of Mg1+yAl2-xO4:xMn4+, yMg2+ deep red phosphor and their optical properties

Peng Ling-Ling, Cao Shi-Xiu, Zhao Cong, Liu Bi-Tao, Han Tao, Li Feng, Li Xiao-Min
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Exploration of efficient deep red phosphor based on non-rare-earth ion activated oxide is of great practical value in the field of phosphors converted white light-emitting diode lighting. A spinel Mg1+yAl2-xO4:xMn4+, yMg2+ phosphor with deep red emission is synthesized by a solid-state reaction route. The crystal structure and morphology are characterized by powder X-ray diffraction and scanning electron microscopy. The luminescent performance is characterized by fluorescence spectrophotometer and fluorescence decay curves. The results demonstrate that the synthesized phosphor shows that two excited spectrum bands centered at 290 nm and 438 nm cover a broad spectral region from 220 nm to 500 nm due to the Mn4+-O2- charge transfer band and the 4A2-4T1 and 4T2 transitions of Mn4+ ions. Upon excitation at 300 nm, a strong, narrow red emission band is observed between 600 and 700 nm peaked at 652 nm as a result of the spin-forbidden 2Eg-4A2g electron transition of Mn4+. The corresponding chromaticity coordinate is (0.7256, 0.2854). Additionally, the concentration quenching of Mn4+ in the MgAl2O4 host is evaluated in detail, which indicates that the optimum doping concentration of Mn4+ is experimentally determined to be 0.14 mol%. The critical distance is calculated to be 52.15 according to the Blasse equation, which elucidates that the concentration quenching mechanism is consequently very likely to be induced by the multipole-multipole interaction. The crystal field strength (Dq) and the Racah parameters (B and C) are estimated to evaluate the nephelauxetic effect of Mn4+ suffered in MgAl2O4:Mn4+ host lattice. Luminous mechanism is explained by Tanabe-Sugano energy level diagram of Mn4+ ion. The ratio of Dq/B equals 1.74, indicating that Mn4+ ions experience a weak crystal field in the MgAl2O4 host and emission peak energy of 2Eg-4A2g transition is dependent on the nephelauxetic effect. The red emission intensity of Mg1+yAl2-xO4:xMn4+, yMg2+ increases on account of excess Mg2+ which would compensate for the local charge balance surrounding Mn4+ ions, furthermore, lead the Mn4+-Mn4+ pairs connected with interstitial O2- to transform into isolated Mn4+ ions, and thus eliminating energy transfer and enhancing the luminescence efficiency effectively. The decay times of two time-dependent curves of Mg1+yAl2-xO4:xMn4+,yMg2+ are 0.672 ms and 0.604 ms, and each entire decay curve could be well-fitted to single-exponential, confirming that there is only a single Mn4+ ion luminescence center. The decay time of Mn4+ luminescence is prolonged with the increase of Mg2+ content, indicating that excitation energy transfer and non-radiative relaxation between Mn4+-Mn4+ pairs decrease, the reason is that photoexcitation energy can be temporarily stored in the trapping centers induced by excess positive charges. These results imply that Mn4+ doped Mg1+yAl2 -xO4:xMn4+, yMg2+ is a promising candidate of deep-red phosphors for near-UV and blue light emitting diodes. These findings in the paper would be beneficial not only to developing a low-cost and safe strategy to produce high-efficient Mn4+ activated luminescent materials for white light emitting diodes, but also to providing a new insight into improving the photoluminescence properties of Mn4+.
      Corresponding author: Peng Ling-Ling, pengll08@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51302330), the Chongqing Natural Science Foundation, China (Grant Nos. cstc2015jcyjA50013, cstc2016shmszx20002, cstc2017jcyjA1821), the Science and Technology Research Foundation of the Education Commission of Chongqing City, China (Grant Nos. KJ1501132, KJ1711272), and the Funding Scheme for Youth Backbone Teachers of Universities in Chongqing, China.
    [1]

    Wang L, Zhang X, Hao Z, Luo Y, Zhang L, Zhong R, Zhang J 2012 J. Electrochem. Soc. 159 F68

    [2]

    Yeh C W, Chen W T, Liu R S, Hu S F, Sheu H S, Chen J M, Hintzen H T 2012 J. Am. Chem. Soc. 134 14108

    [3]

    Wang Y R, Liu X H, Niu P F, Jing L D, Zhao W R 2017 J. Lumin. 184 1

    [4]

    Pust P, Weiler V, Hecht C, Tcks A, Wochnik A S, Hen A K, Wiechert D, Scheu C, Schmidt P J, Schnick W 2014 Nat. Mater. 13 891

    [5]

    Pavitra E, Raju G S R, Yu J S 2014 J. Alloys Compd. 592 157

    [6]

    Wang L L, Noh H M, Moon B K, Park S H, Kim K H, Shi J S, Jeong J H 2015 J. Phys. Chem. C 119 15517

    [7]

    Xu X H, Zhang W F, Yang D C, Lu W, Qiu J B, Yu S F 2016 Adv. Mater. 28 8045

    [8]

    Zhao C, Meng Q Y, Sun W J 2015 Acta Phys. Sin. 64 107803 (in Chinese) [赵聪, 孟庆裕, 孙文军 2015 物理学报 64 107803]

    [9]

    Brik M G, Srivastava A M 2013 J. Lumin. 133 69

    [10]

    Du M H 2015 J. Lumin. 157 69

    [11]

    Shao Q Y, Wang L, Song L, Dong Y, Liang C, He J H, Jiang J Q 2017 J. Alloys Compd. 695 221

    [12]

    Lee M J, Song Y H, Song Y L, Han G S, Jung H S, Yoon D H 2015 Mater. Lett. 141 27

    [13]

    Medić M M, Brik M G, Dražić G, Antić Ž M, Lojpur V M, Dramićanin M D 2015 J. Phys. Chem. C 119 724

    [14]

    Fu A J, Zhou C Y, Chen Q, Lu Z Z, Huang T J, Wang H, Zhou L Y 2017 Ceram. Int. 43 6353

    [15]

    Xu W, Chen D Q, Yuan S, Zhou Y, Li S C 2017 Chem. Eng. J. 317 854

    [16]

    Wang B, Lin H, Xu J, Chen H, Wang Y 2014 ACS Appl. Mater. Inter 6 22905

    [17]

    Pan Y X, Liu G K 2011 J. Lumin. 131 465

    [18]

    Cao R P, Luo W J, Xu H D, Luo Z Y, Hu Q L, Fu T, Peng D D 2016 Opt. Mater. 53 169

    [19]

    Xu Y D, Wang D, Wang L, Ding N, Shi M, Zhong J G, Qi S 2013 J. Alloys Compd. 550 226

    [20]

    Wang B, Lin H, Huang F, Xu J, Chen H, Lin Z B, Wang Y S 2016 Chem. Mater. 28 3515

  • [1]

    Wang L, Zhang X, Hao Z, Luo Y, Zhang L, Zhong R, Zhang J 2012 J. Electrochem. Soc. 159 F68

    [2]

    Yeh C W, Chen W T, Liu R S, Hu S F, Sheu H S, Chen J M, Hintzen H T 2012 J. Am. Chem. Soc. 134 14108

    [3]

    Wang Y R, Liu X H, Niu P F, Jing L D, Zhao W R 2017 J. Lumin. 184 1

    [4]

    Pust P, Weiler V, Hecht C, Tcks A, Wochnik A S, Hen A K, Wiechert D, Scheu C, Schmidt P J, Schnick W 2014 Nat. Mater. 13 891

    [5]

    Pavitra E, Raju G S R, Yu J S 2014 J. Alloys Compd. 592 157

    [6]

    Wang L L, Noh H M, Moon B K, Park S H, Kim K H, Shi J S, Jeong J H 2015 J. Phys. Chem. C 119 15517

    [7]

    Xu X H, Zhang W F, Yang D C, Lu W, Qiu J B, Yu S F 2016 Adv. Mater. 28 8045

    [8]

    Zhao C, Meng Q Y, Sun W J 2015 Acta Phys. Sin. 64 107803 (in Chinese) [赵聪, 孟庆裕, 孙文军 2015 物理学报 64 107803]

    [9]

    Brik M G, Srivastava A M 2013 J. Lumin. 133 69

    [10]

    Du M H 2015 J. Lumin. 157 69

    [11]

    Shao Q Y, Wang L, Song L, Dong Y, Liang C, He J H, Jiang J Q 2017 J. Alloys Compd. 695 221

    [12]

    Lee M J, Song Y H, Song Y L, Han G S, Jung H S, Yoon D H 2015 Mater. Lett. 141 27

    [13]

    Medić M M, Brik M G, Dražić G, Antić Ž M, Lojpur V M, Dramićanin M D 2015 J. Phys. Chem. C 119 724

    [14]

    Fu A J, Zhou C Y, Chen Q, Lu Z Z, Huang T J, Wang H, Zhou L Y 2017 Ceram. Int. 43 6353

    [15]

    Xu W, Chen D Q, Yuan S, Zhou Y, Li S C 2017 Chem. Eng. J. 317 854

    [16]

    Wang B, Lin H, Xu J, Chen H, Wang Y 2014 ACS Appl. Mater. Inter 6 22905

    [17]

    Pan Y X, Liu G K 2011 J. Lumin. 131 465

    [18]

    Cao R P, Luo W J, Xu H D, Luo Z Y, Hu Q L, Fu T, Peng D D 2016 Opt. Mater. 53 169

    [19]

    Xu Y D, Wang D, Wang L, Ding N, Shi M, Zhong J G, Qi S 2013 J. Alloys Compd. 550 226

    [20]

    Wang B, Lin H, Huang F, Xu J, Chen H, Lin Z B, Wang Y S 2016 Chem. Mater. 28 3515

  • [1] Zhao Jian-Cheng, Wu Chao-Xing, Guo Tai-Liang. Carrier transport model of non-carrier-injection light-emitting diode. Acta Physica Sinica, 2023, 72(4): 048503. doi: 10.7498/aps.72.20221831
    [2] Wang Dan, Qiu Rong, Chen Bo, Bao Nan-Yun, Kang Dong-Dong, Dai Jia-Yu. Electronic and optical properties of two-dimensional ice I. Acta Physica Sinica, 2021, 70(13): 133101. doi: 10.7498/aps.70.20210708
    [3] Huang Shen-Yang, Zhang Guo-Wei, Wang Fan-Jie, Lei Yu-Chen, Yan Hu-Gen. Optical properties of two-dimensional black phosphorus. Acta Physica Sinica, 2021, 70(2): 027802. doi: 10.7498/aps.70.20201497
    [4] Ye Jian-Feng, Qing Ming-Zhe, Xiao Qing-Quan, Wang Ao-Shuang, He An-Na, Xie Quan. First-principles study of electronic structure , magnetic and optical properties of Ti, V, Co and Ni doped two-dimensional CrSi2 materials. Acta Physica Sinica, 2021, 70(22): 227301. doi: 10.7498/aps.70.20211023
    [5] Xiong Zi-Qian, Zhang Peng-Cheng, Kang Wen-Bin, Fang Wen-Yu. Study on the electronic structure and photocatalytic properties of a novel monolayer TiO2. Acta Physica Sinica, 2020, 69(16): 166301. doi: 10.7498/aps.69.20200631
    [6] Wang Dang-Hui, Xu Tian-Han. Low-frequency generation-recombination noise behaviors of blue/violet-light-emitting diode. Acta Physica Sinica, 2019, 68(12): 128104. doi: 10.7498/aps.68.20190189
    [7] Qu Zi-Han, Chu Ze-Ma, Zhang Xing-Wang, You Jing-Bi. Research progress of efficient green perovskite light emitting diodes. Acta Physica Sinica, 2019, 68(15): 158504. doi: 10.7498/aps.68.20190647
    [8] Jia Bo-Lun, Deng Ling-Ling, Chen Ruo-Xi, Zhang Ya-Nan, Fang Xu-Min. Numerical research of emission properties of localized surface plasmon resonance enhanced light-emitting diodes based on Ag@SiO2 nanoparticles. Acta Physica Sinica, 2017, 66(23): 237801. doi: 10.7498/aps.66.237801
    [9] Chen Wei-Chao, Tang Hui-Li, Luo Ping, Ma Wei-Wei, Xu Xiao-Dong, Qian Xiao-Bo, Jiang Da-Peng, Wu Feng, Wang Jing-Ya, Xu Jun. Research progress of substrate materials used for GaN-Based light emitting diodes. Acta Physica Sinica, 2014, 63(6): 068103. doi: 10.7498/aps.63.068103
    [10] Xie Zhi, Cheng Wen-Dan. First-principles study of electronic structure and optical properties of TiO2 nanotubes. Acta Physica Sinica, 2014, 63(24): 243102. doi: 10.7498/aps.63.243102
    [11] Gao Hui, Kong Fan-Min, Li Kang, Chen Xin-Lian, Ding Qing-An, Sun Jing. Structural optimization of GaN blue light LED with double layers of photonic crystals. Acta Physica Sinica, 2012, 61(12): 127807. doi: 10.7498/aps.61.127807
    [12] Tang Hong-Xia, Lü Shu-Chen. Preparation and luminescent properties of SrMoO4:Eu3+phosphor for light emitting diode. Acta Physica Sinica, 2011, 60(3): 037805. doi: 10.7498/aps.60.037805
    [13] Li Xu-Zhen, Xie Quan, Chen Qian, Zhao Feng-Juan, Cui Dong-Meng. The study on the electronic structure and optical properties of OsSi2. Acta Physica Sinica, 2010, 59(3): 2016-2021. doi: 10.7498/aps.59.2016
    [14] Li Bing-Qian, Zheng Tong-Chang, Xia Zheng-Hao. Temperature characteristics of the forward voltage of GaN based blue light emitting diodes. Acta Physica Sinica, 2009, 58(10): 7189-7193. doi: 10.7498/aps.58.7189
    [15] Guan Li, Liu Bao-Ting, Li Xu, Zhao Qing-Xun, Wang Ying-Long, Guo Jian-Xin, Wang Shu-Biao. Electronic structure and optical properties of fluorite-structure TiO2. Acta Physica Sinica, 2008, 57(1): 482-487. doi: 10.7498/aps.57.482
    [16] Hu Jin, Du Lei, Zhuang Yi-Qi, Bao Jun-Lin, Zhou Jiang. Noise as a representation for reliability of light emitting diode. Acta Physica Sinica, 2006, 55(3): 1384-1389. doi: 10.7498/aps.55.1384
    [17] Liu Nai-Xin, Wang Huai-Bing, Liu Jian-Ping, Niu Nan-Hui, Han Jun, Shen Guang-Di. Growth of p-GaN at low temperature and its properties as light emitting diodes. Acta Physica Sinica, 2006, 55(3): 1424-1429. doi: 10.7498/aps.55.1424
    [18] Jiang Hai-Qing, Yao Xi, Che Jun, Wang Min-Qiang. Luminescence and optical constant of ZnSe/SiO2 composite thin films. Acta Physica Sinica, 2006, 55(4): 2084-2091. doi: 10.7498/aps.55.2084
    [19] Xu Geng-Zhao, Liang Hu, Bai Yong-Qiang, Lau Kei-May, Zhu Xing. Study of temperature dependent electroluminescence of InGaN/GaN multiple quantum wells using low temperature scanning near-field optical microscopy. Acta Physica Sinica, 2005, 54(11): 5344-5349. doi: 10.7498/aps.54.5344
    [20] Hou Lin-Tao, Hou Qiong, Peng Jun-Biao, Cao Yong. Performance of polymer light-emitting diodes with saturated red-emitting poly(fluorine-co-4,7-dithien-2-yl-2,1,3-benzothiadiazole-carbazole or triphenylamine). Acta Physica Sinica, 2005, 54(11): 5377-5381. doi: 10.7498/aps.54.5377
Metrics
  • Abstract views:  6319
  • PDF Downloads:  111
  • Cited By: 0
Publishing process
  • Received Date:  23 April 2018
  • Accepted Date:  20 June 2018
  • Published Online:  20 September 2019

/

返回文章
返回