Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress of light out-coupling in organic light-emitting diodes with non-period micro/nanostructures

Liu Meng-Jiao Zhang Xin-Wen Wang Jiong Qin Ya-Bo Chen Yue-Hua Huang Wei

Citation:

Research progress of light out-coupling in organic light-emitting diodes with non-period micro/nanostructures

Liu Meng-Jiao, Zhang Xin-Wen, Wang Jiong, Qin Ya-Bo, Chen Yue-Hua, Huang Wei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Organic light-emitting diodes (OLEDs) possess a number of advantages such as low power consumption, light weight, wide color gamut, high response speed, and high contrast ratio. They have received widespread attention due to their tremendous commercial applications in the fields of full-color flat panel display and solid-state lighting. Although nearly 100% internal quantum efficiency of OLED has been achieved through adopting phosphorescence or thermally activated delayed fluorescence emitters. However, the majority of light generated in an emitting layer is confined within the whole device but does not escape into air due to the induced surface plasmons at the interface between metal and dielectric layers as well as the differences in refractive index between layers of OLED structures including air, glass substrate, transparent electrode as well as organic or inorganic layers. The external quantum efficiency for an OLED with a flat glass substrate is limited to~20%. A low light out-coupling efficiency severely restricts the development and application of OLED. Therefore, enhancing the light out-coupling efficiency of OLED via light extraction technology offers the greatest potential for achieving a substantial increase in the external quantum efficiency of OLED and has been one of the most attractive projects. Up to now, lots of light out-coupling technologies such as micro-lens arrays, photonic crystal, Bragg mirrors and periodic grating have been suggested to enhance the out-coupling efficiency of OLEDs. However, the periodic light out-coupling structures have a limitation that the electroluminescence intensity and spectrum of OLED usually depend on the viewing angle. The angular dependence of the emission characteristic does not hold true for actual display applications due to its deviation from the Lambertian intensity distribution. In this review, we present recent research progress of using non-period micro/nanostructures to improve the light out-coupling efficiency of OLED. In contrast to the emission directionality for OLED using periodic light out-coupling structures, the luminance distribution and spectral stability of OLED based on non-period micro/nanostructures are insensitive to viewing angle. Various light out-coupling techniques such as random micro/nano lens structure, light scattering medium layer, polymer porous scattering films, random concave-convex corrugated structure, and random buckled structure are summarized and discussed. These techniques have the potential applications in displays and solid-state lighting. Finally, summary and prospects regarding to light-coupling techniques of OLEDs are presented.
      Corresponding author: Zhang Xin-Wen, iamxwzhang@njupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61774088, 61705112), the National Basic Research Program of China (Grant No. 2014CB648300), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20170913, BK20161519), and the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, China (Grant No. YX03001).
    [1]

    Tang C W, Vanslyke S A, Chen C H 1989 J. Appl. Phys. 65 3610

    [2]

    Luo Y, Wang C H, Wang L, Ding Y C, Li L, Wei B, Zhang J H 2014 ACS Appl. Mat. Interfaces 6 10213

    [3]

    McCarthy M A, Rinzler A G 2011 Science 332 570

    [4]

    Shen J, Li F, Cao Z, Barat D, Tu G 2017 ACS Appl. Mat. Interfaces 9 14990

    [5]

    Kessler F, Watanabe Y, Sasabe H, Katagiri H, Nazeeruddin M K, Grtzel M, Kido J 2013 J. Mater. Chem. C 1 1070

    [6]

    Eom S H, Wrzesniewski E, Xue J G 2011 J. Photon. Energy 1 011002

    [7]

    Xu L, Tang C W, Rothberg L J 2016 Org. Electron. 32 54

    [8]

    Han J H, Kim D H, Choi K C 2015 Opt. Express 23 19863

    [9]

    Zhang X W, Hu Q 2012 Acta Phys. Sin. 61 207802 (in Chinese)[张新稳, 胡琦 2012 物理学报 61 207802]

    [10]

    Kim S Y, Jeong W I, Mayr C, Park Y S, Kim K H, Lee J H, Moon C K, Brtting W, Kim J J 2013 Adv. Funct. Mater. 23 3896

    [11]

    Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C 2012 Nature 492 234

    [12]

    Sun Y, Giebink N C, Kanno H, Ma B, Thompson M E, Forrest S R 2006 Nature 440 908

    [13]

    Wang Q, Ma D 2010 Chem. Soc. Rev. 39 2387

    [14]

    Hyun W J, Lee H K, Im S H, Park O O 2014 J. Nanosci. Nanotechnol. 14 8411

    [15]

    Lee J I, Lee J, Lee J W, Cho D H, Shin J W, Han J H, Chu H Y 2012 ETRI J. 34 690

    [16]

    Adachi C, Kwong R C, Djurovich P, Adamovich V, Baldo M A, Thompson M E, Forrest S R 2001 Appl. Phys. Lett. 79 2082

    [17]

    Tokito S, Iijima T, Suzuri Y, Kita H, Tsuzuki T, Sato F 2003 Appl. Phys. Lett. 83 569

    [18]

    Lan L H, Tao H, Li M L, Gao D Y, Zou J H, Xu M, Wang L, Peng J B 2017 Acta Phys. Chim. Sin. 33 1548 (in Chinese)[蓝露华, 陶洪, 李美灵, 高栋雨, 邹建华, 徐苗, 王磊, 彭俊彪 2017 物理化学学报 33 1548]

    [19]

    Saxena K, Jain V K, Mehta D S 2009 Opt. Mater. 32 221

    [20]

    Hobson P A, Wasey J A E, Sage I, Barnes W L 2002 IEEE J. Sel. Top. Quantum Electron. 8 378

    [21]

    Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C 2012 Nature 492 234

    [22]

    Chutinan A, Ishihara K, Asano T, Fujita M, Noda S 2005 Org. Electron. 6 3

    [23]

    Nowy S, Krummacher B C, Frischeisen J, Reinke N A, Brtting W 2008 J. Appl. Phys. 104 801

    [24]

    Meerheim R, Furno M, Hofmann S, Lussem B, Leo K 2010 Appl. Phys. Lett. 97 275

    [25]

    Bocksrocker T, Preinfalk J B, Aschetauscher J, Pargner A, Eschenbaum C, Maierflaig F, Lemme U 2012 Opt. Express 20 A932

    [26]

    Mller S, Forrest S R 2002 J. Appl. Phys. 91 3324

    [27]

    Mann V, Rastogi V 2017 Opt. Commun. 387 202

    [28]

    Sun Y, Forrest S R 2006 J. Appl. Phys. 100 3730

    [29]

    Hong K, Lee J L 2011 Electron. Mater. Lett. 7 77

    [30]

    Yang Y, Chen S F, Xie J, Chen C Y, Shao M, Guo X, Huang W 2011 Acta Phys. Sin. 60 047809 (in Chinese)[杨洋, 陈淑芬, 谢军, 陈春燕, 邵茗, 郭旭, 黄维 2011 物理学报 60 047809]

    [31]

    Do Y R, Kim Y C, Song Y W, Lee Y H 2004 J. Appl. Phys. 96 7629

    [32]

    Ishihara K, Fujita M, Matsubara I, Asano T, Noda S, Ohata H, Hirasawa A, Nakada H, Shimoji N 2007 Appl. Phys. Lett. 90 913

    [33]

    Lee Y J, Kim S H, Huh J, Kim G H, Lee Y H, Cho S H, Kim Y C, Do Y R 2003 Appl. Phys. Lett. 82 3779

    [34]

    Bocksrocker T, Preinfalk J B, Asche-Tauscher J, Pargner A, Eschenbaum C, Maier-Flaig F, Lemmer U 2012 Opt. Express 20 A932

    [35]

    Brtting W, Frischeisen J, Schmidt T D, Scholz B J, Mayr C 2013 Phys. Status Solidi A 210 44

    [36]

    Fuchs C, Schwab T, Roch T, Eckardt S, Lasagni A, Hofmann S, Lssem B, Mllermeskamp L, Leo K, Gather M C 2013 Opt. Express 21 16319

    [37]

    Jin Y, Feng J, Zhang X L, Bi Y G, Bai Y, Chen L, Lan T, Liu Y F, Chen Q D, Sun H B 2012 Adv. Mater. 24 1187

    [38]

    Do Y R, Kim Y C, Song Y W, Cho C O, Jeon H, Lee Y J, Kim S H, Lee Y H 2003 Adv. Mater. 15 1214

    [39]

    Yang J P, Bao Q Y, Xu Z Q, Li Y Q, Tang J X, Shen S 2010 Appl. Phys. Lett. 97 223303

    [40]

    Gifford D K, Hall D G 2002 Appl. Phys. Lett. 81 4315

    [41]

    Cho D H, Shin J W, Joo C W, Lee J, Park S K, Moon J, Cho N S, Chu H Y, Lee J I 2014 Opt. Express 22 A1507

    [42]

    Lee K, Lee J, Joo C W, Kim J Y, Cho D H, Lee J I, Chu H Y, Moon J, Ju B K 2014 ECS Solid State Lett. 3 R56

    [43]

    Lee S, Wrzesniewski E, Cao W, Xue J, Douglas E P 2013 J. Disp. Technol. 9 497

    [44]

    Koo W H, Jeong S M, Araoka F, Ishikawa K, Nishimura S, Toyooka T, Takezoe H 2010 Nat. Photonics 4 222

    [45]

    Kim J Y, Choi C S, Kim W H, Kim D Y, Kim d H, Choi K C 2013 Opt. Exp. 21 5424

    [46]

    Zhou L, Ou Q D, Li Y Q, Xiang H Y, Xu L H, Chen J D, Li C, Shen S, Lee S T, Tang J X 2015 Adv. Funct. Mater. 25 2660

    [47]

    Yamasaki T, Sumioka K, Tsutsui T 2000 Adv. Funct. Mater. 76 1243

    [48]

    Moller S, Forrest S R 2002 J. Appl. Phys. 91 3324

    [49]

    Eom S H, Wrzesniewski E, Xue J 2011 Org. Electron. 12 472

    [50]

    Lee K, Lee J, Kim E, Lee J I, Cho D H, Lim J T, Joo C W, Kim J Y, Yoo S, Ju B K, Moon J 2016 Nanotechnology 27 075202

    [51]

    Suh M C, Pyo B, Lim B W, Kim N S 2016 Org. Electron. 38 316

    [52]

    Zhao X D, Li Y Q, Xiang H Y, Zhang Y B, Chen J D, Xu L H, Tang J X 2017 ACS Appl. Mat. Interfaces 9 2767

    [53]

    Wang R, Xu L H, Li Y Q, Zhou L, Li C, Ou Q D, Chen J D, Shen S, Tang J X 2015 Adv. Opt. Mater. 3 203

    [54]

    Tsai M A, Yu P C, Chiu C H, Kuo H C, Lu T C, Lin S H 2010 IEEE Photonic. Tech. L. 22 12

    [55]

    Jeong S M, Ha N Y, Takezoe H, Nishimura S 2008 J. Appl. Phys. 103 506

    [56]

    Zhou D Y, Shi X B, Gao C H, Cai S D, Jin Y, Liao L S 2014 Appl. Surf. Sci. 314 858

    [57]

    Hu J, Yu Y, Jiao B, Ning S, Dong H, Hou X, Zhang Z, Wu Z 2016 Org. Electron. 31 234

    [58]

    Schwab T, Fuchs C, Scholz R, Zakhidov A, Leo K, Gather M C 2014 Opt. Express 22 7524

    [59]

    Chen S, Zhao Z, Tang B Z, Kwok H S 2012 Org. Electron. 13 1996

    [60]

    Riedel B, Hauss J, Aichholz M, Gall A, Lemmer U, Gerken M 2010 Org. Electron. 11 1172

    [61]

    Song H J, Han J, Lee G, Sohn J, Kwon Y, Choi M, Lee C 2018 Org. Electron. 52 230

    [62]

    Niesen B, Rand B P, van Dorpe P, Cheyns D, Tong L, Dmitriev A, Heremans P 2013 Adv. Energy Mater. 3 145

    [63]

    Lee C, Han K H, Kim K H, Kim J J 2016 Opt. Express 24 A488

    [64]

    Chen K Y, Chang Y T, Ho Y H, Lin H Y, Lee J H, Wei M K 2010 Opt. Express 18 3238

    [65]

    Park J M, Gan Z, Leung W Y, Liu R, Ye Z, Constant K, Shinar J, Shinar R, Ho K M 2011 Opt. Express 19 A786

    [66]

    Hwang J H, Park T H, Lee H J, Choi K B, Park Y W, Ju B K 2013 Opt. Lett. 38 4182

    [67]

    Thomschke M, Reineke S, Lssem B, Leo K 2012 Nano Lett. 12 424

    [68]

    Joo C W, Lee K, Lee J, Cho H, Shin J W, Cho N S, Moon J 2017 J. Lumin. 187 433

    [69]

    Kim Y Y, Park J J, Ye S J, Hyun W J, Im H G, Bae B S, Park O O 2016 RSC Adv. 6 65450

    [70]

    Xiang H Y, Li Y Q, Zhou L, Xie H J, Li C, Ou Q D, Chen L S, Lee C S, Lee S T, Tang J X 2015 ACS Nano 9 7553

    [71]

    Liu B, Wang L, Xu M, Tao H, Gao D, Zou J, Lan L, Ning H, Peng J, Cao Y 2014 J. Mater. Chem. C 2 9836

    [72]

    Ding L, Wang L W, Zhou L, Zhang F H 2016 Appl. Surf. Sci. 389 990

    [73]

    Kim K H, Park S Y 2016 Org. Electron. 36 103

    [74]

    Schaefer T, Schwab T, Lenk S, Gather M C 2015 Appl. Phys. Lett. 107

    [75]

    Liu R, Ye Z, Park J M, Cai M, Chen Y, Ho K M, Shinar R, Shinar J 2011 Opt. Express 19 A1272

    [76]

    Go H, Koh T W, Jung H, Park C Y, Ha T W, Kim E M, Kang M H, Yong H K, Yun C 2017 Org. Electron. 47 117

    [77]

    Pyo B, Joo C W, Kim H S, Kwon B H, Lee J I, Lee J, Suh M C 2016 Nanoscale 8 8575

    [78]

    Lim B W, Suh M C 2014 Nanoscale 6 14446

    [79]

    Lee K M, Fardel R, Zhao L, Arnold C B, Rand B P, Lee K M, Fardel R, Zhao L, Arnold C B, Rand B P 2017 Org. Electron. 51 471

    [80]

    Jeong S M, Takezoe H 2012 Effect of Photonic Structures in Organic Light-Emitting Diodes-Light Extraction and Polarization Characteristics (INTECH Open Access Publisher) pp66--67

    [81]

    Kwok H S, Chen S 2010 Opt. Express 18 37

    [82]

    Zhou J, Ai N, Wang L, Zheng H, Luo C, Jiang Z, Yu S, Cao Y, Wang J 2011 Org. Electron. 12 648

    [83]

    Lee I, Park J Y, Gim S, Ham J, Son J H, Lee J L 2015 Small 11 4480

    [84]

    Riedel B, Shen Y X, Hauss J, Aichholz M, Tang X C, Lemmer U, Gerken M 2011 Adv. Mater. 23 740

    [85]

    Park Y, Muller-Meskamp L, Vandewal K, Leo K 2016 Appl. Phys. Lett. 108

    [86]

    Liang H, Zhu R, Dong Y, Wu S T, Li J, Wang J, Zhou J 2015 Opt. Express 23 12910

    [87]

    Chang C H, Chang K Y, Lo Y J, Chang S J, Chang H H 2012 Org. Electron. 13 1073

    [88]

    Chang C H, Chang T F, Liang Y H, Lo Y J, Wu Y J, Chang H H 2016 Jpn. J. Appl. Phys. 55

    [89]

    Chang H W, Lee J, Hofmann S, Yong H K, Mllermeskamp L, Lssem B, Wu C C, Leo K, Gather M C 2013 J. Appl. Phys. 113 234

    [90]

    Joo C W, Shin J W, Moon J, Huh J W, Cho D H, Lee J, Park S K, Cho N S, Han J H, Chu H Y, Lee J I 2016 Org. Electron. 29 72

    [91]

    Lee K, Shin J W, Park J H, Lee J, Joo C W, Lee J I, Cho D H, Lim J T, Oh M C, Ju B K 2016 ACS Appl. Mat. Interfaces 8 17409

    [92]

    Jin H K, Han J W, Dong J L, Entifar S A N, Ramadhan Z R, Lim K T, Yong H K 2017 Org. Electron. 54 204

    [93]

    Yuan S, Hao Y, Miao Y, Sun Q, Li Z, Cui Y, Wang H, Xu B 2017 RSC Adv. 7 43987

    [94]

    To B D, Yu C C, Ho J R, Kan H C, Hsu C C 2018 Org. Electron. 53 160

    [95]

    Shi J, Wang L, Li L, Luo Y, Ding Y 2013 Opt. Lett. 38 2394

    [96]

    Wang R, Xu L H, Li Y Q, Zhou L, Li C, Ou Q D, Chen J D, Shen S, Tang J X 2015 Adv. Opt. Mater. 3 203

    [97]

    Ou Q D, Xu L H, Zhang W Y, Li Y Q, Zhang Y B, Zhao X D, Chen J D, Tang J X 2016 Opt. Express 24 A674

    [98]

    Cho H, Kim E, Moon J, Joo C W, Kim E, Park S K, Lee J, Yu B G, Lee J I, Yoo S 2017 Org. Electron. 46 139

    [99]

    Lee C, Kim J J 2013 Small 9 3858

    [100]

    Hobson P A, Wedge S, Wasey J A E, Sage I, Barnes W L 2002 Adv. Mater. 14 1393

    [101]

    Koo W H, Jeong S M, Nishimura S, Araoka F, Ishikawa K, Toyooka T, Takezoe H 2011 Adv. Mater. 23 1003

    [102]

    Bai Y, Feng J, Liu Y F, Song J F, Simonen J, Jin Y, Chen Q D, Zi J, Sun H B 2011 Org. Electron. 12 1927

    [103]

    Jin Y, Feng J, Zhang X L, Bi Y G, Bai Y, Chen L, Lan T, Liu Y F, Chen Q D, Sun H B 2012 Adv. Mater. 24 1187

    [104]

    Jiao B, Yu Y, Dai Y, Hou X, Wu Z 2015 Opt. Express 23 4055

    [105]

    Kim D H, Kim J Y, Kim D Y, Han J H, Choi K C 2014 Org. Electron. 15 3183

    [106]

    Xu L H, Ou Q D, Li Y Q, Zhang Y B, Zhao X D, Xiang H Y, Chen J D, Zhou L, Lee S T, Tang J X 2016 ACS Nano 10 1625

    [107]

    Zhang Y B, Ou Q D, Li Y Q, Chen J D, Zhao X D, Wei J, Xie Z Z, Tang J X 2017 Opt. Express 25 15662

    [108]

    Park B, Jeon H G 2011 Opt. Express 19 A1117

  • [1]

    Tang C W, Vanslyke S A, Chen C H 1989 J. Appl. Phys. 65 3610

    [2]

    Luo Y, Wang C H, Wang L, Ding Y C, Li L, Wei B, Zhang J H 2014 ACS Appl. Mat. Interfaces 6 10213

    [3]

    McCarthy M A, Rinzler A G 2011 Science 332 570

    [4]

    Shen J, Li F, Cao Z, Barat D, Tu G 2017 ACS Appl. Mat. Interfaces 9 14990

    [5]

    Kessler F, Watanabe Y, Sasabe H, Katagiri H, Nazeeruddin M K, Grtzel M, Kido J 2013 J. Mater. Chem. C 1 1070

    [6]

    Eom S H, Wrzesniewski E, Xue J G 2011 J. Photon. Energy 1 011002

    [7]

    Xu L, Tang C W, Rothberg L J 2016 Org. Electron. 32 54

    [8]

    Han J H, Kim D H, Choi K C 2015 Opt. Express 23 19863

    [9]

    Zhang X W, Hu Q 2012 Acta Phys. Sin. 61 207802 (in Chinese)[张新稳, 胡琦 2012 物理学报 61 207802]

    [10]

    Kim S Y, Jeong W I, Mayr C, Park Y S, Kim K H, Lee J H, Moon C K, Brtting W, Kim J J 2013 Adv. Funct. Mater. 23 3896

    [11]

    Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C 2012 Nature 492 234

    [12]

    Sun Y, Giebink N C, Kanno H, Ma B, Thompson M E, Forrest S R 2006 Nature 440 908

    [13]

    Wang Q, Ma D 2010 Chem. Soc. Rev. 39 2387

    [14]

    Hyun W J, Lee H K, Im S H, Park O O 2014 J. Nanosci. Nanotechnol. 14 8411

    [15]

    Lee J I, Lee J, Lee J W, Cho D H, Shin J W, Han J H, Chu H Y 2012 ETRI J. 34 690

    [16]

    Adachi C, Kwong R C, Djurovich P, Adamovich V, Baldo M A, Thompson M E, Forrest S R 2001 Appl. Phys. Lett. 79 2082

    [17]

    Tokito S, Iijima T, Suzuri Y, Kita H, Tsuzuki T, Sato F 2003 Appl. Phys. Lett. 83 569

    [18]

    Lan L H, Tao H, Li M L, Gao D Y, Zou J H, Xu M, Wang L, Peng J B 2017 Acta Phys. Chim. Sin. 33 1548 (in Chinese)[蓝露华, 陶洪, 李美灵, 高栋雨, 邹建华, 徐苗, 王磊, 彭俊彪 2017 物理化学学报 33 1548]

    [19]

    Saxena K, Jain V K, Mehta D S 2009 Opt. Mater. 32 221

    [20]

    Hobson P A, Wasey J A E, Sage I, Barnes W L 2002 IEEE J. Sel. Top. Quantum Electron. 8 378

    [21]

    Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C 2012 Nature 492 234

    [22]

    Chutinan A, Ishihara K, Asano T, Fujita M, Noda S 2005 Org. Electron. 6 3

    [23]

    Nowy S, Krummacher B C, Frischeisen J, Reinke N A, Brtting W 2008 J. Appl. Phys. 104 801

    [24]

    Meerheim R, Furno M, Hofmann S, Lussem B, Leo K 2010 Appl. Phys. Lett. 97 275

    [25]

    Bocksrocker T, Preinfalk J B, Aschetauscher J, Pargner A, Eschenbaum C, Maierflaig F, Lemme U 2012 Opt. Express 20 A932

    [26]

    Mller S, Forrest S R 2002 J. Appl. Phys. 91 3324

    [27]

    Mann V, Rastogi V 2017 Opt. Commun. 387 202

    [28]

    Sun Y, Forrest S R 2006 J. Appl. Phys. 100 3730

    [29]

    Hong K, Lee J L 2011 Electron. Mater. Lett. 7 77

    [30]

    Yang Y, Chen S F, Xie J, Chen C Y, Shao M, Guo X, Huang W 2011 Acta Phys. Sin. 60 047809 (in Chinese)[杨洋, 陈淑芬, 谢军, 陈春燕, 邵茗, 郭旭, 黄维 2011 物理学报 60 047809]

    [31]

    Do Y R, Kim Y C, Song Y W, Lee Y H 2004 J. Appl. Phys. 96 7629

    [32]

    Ishihara K, Fujita M, Matsubara I, Asano T, Noda S, Ohata H, Hirasawa A, Nakada H, Shimoji N 2007 Appl. Phys. Lett. 90 913

    [33]

    Lee Y J, Kim S H, Huh J, Kim G H, Lee Y H, Cho S H, Kim Y C, Do Y R 2003 Appl. Phys. Lett. 82 3779

    [34]

    Bocksrocker T, Preinfalk J B, Asche-Tauscher J, Pargner A, Eschenbaum C, Maier-Flaig F, Lemmer U 2012 Opt. Express 20 A932

    [35]

    Brtting W, Frischeisen J, Schmidt T D, Scholz B J, Mayr C 2013 Phys. Status Solidi A 210 44

    [36]

    Fuchs C, Schwab T, Roch T, Eckardt S, Lasagni A, Hofmann S, Lssem B, Mllermeskamp L, Leo K, Gather M C 2013 Opt. Express 21 16319

    [37]

    Jin Y, Feng J, Zhang X L, Bi Y G, Bai Y, Chen L, Lan T, Liu Y F, Chen Q D, Sun H B 2012 Adv. Mater. 24 1187

    [38]

    Do Y R, Kim Y C, Song Y W, Cho C O, Jeon H, Lee Y J, Kim S H, Lee Y H 2003 Adv. Mater. 15 1214

    [39]

    Yang J P, Bao Q Y, Xu Z Q, Li Y Q, Tang J X, Shen S 2010 Appl. Phys. Lett. 97 223303

    [40]

    Gifford D K, Hall D G 2002 Appl. Phys. Lett. 81 4315

    [41]

    Cho D H, Shin J W, Joo C W, Lee J, Park S K, Moon J, Cho N S, Chu H Y, Lee J I 2014 Opt. Express 22 A1507

    [42]

    Lee K, Lee J, Joo C W, Kim J Y, Cho D H, Lee J I, Chu H Y, Moon J, Ju B K 2014 ECS Solid State Lett. 3 R56

    [43]

    Lee S, Wrzesniewski E, Cao W, Xue J, Douglas E P 2013 J. Disp. Technol. 9 497

    [44]

    Koo W H, Jeong S M, Araoka F, Ishikawa K, Nishimura S, Toyooka T, Takezoe H 2010 Nat. Photonics 4 222

    [45]

    Kim J Y, Choi C S, Kim W H, Kim D Y, Kim d H, Choi K C 2013 Opt. Exp. 21 5424

    [46]

    Zhou L, Ou Q D, Li Y Q, Xiang H Y, Xu L H, Chen J D, Li C, Shen S, Lee S T, Tang J X 2015 Adv. Funct. Mater. 25 2660

    [47]

    Yamasaki T, Sumioka K, Tsutsui T 2000 Adv. Funct. Mater. 76 1243

    [48]

    Moller S, Forrest S R 2002 J. Appl. Phys. 91 3324

    [49]

    Eom S H, Wrzesniewski E, Xue J 2011 Org. Electron. 12 472

    [50]

    Lee K, Lee J, Kim E, Lee J I, Cho D H, Lim J T, Joo C W, Kim J Y, Yoo S, Ju B K, Moon J 2016 Nanotechnology 27 075202

    [51]

    Suh M C, Pyo B, Lim B W, Kim N S 2016 Org. Electron. 38 316

    [52]

    Zhao X D, Li Y Q, Xiang H Y, Zhang Y B, Chen J D, Xu L H, Tang J X 2017 ACS Appl. Mat. Interfaces 9 2767

    [53]

    Wang R, Xu L H, Li Y Q, Zhou L, Li C, Ou Q D, Chen J D, Shen S, Tang J X 2015 Adv. Opt. Mater. 3 203

    [54]

    Tsai M A, Yu P C, Chiu C H, Kuo H C, Lu T C, Lin S H 2010 IEEE Photonic. Tech. L. 22 12

    [55]

    Jeong S M, Ha N Y, Takezoe H, Nishimura S 2008 J. Appl. Phys. 103 506

    [56]

    Zhou D Y, Shi X B, Gao C H, Cai S D, Jin Y, Liao L S 2014 Appl. Surf. Sci. 314 858

    [57]

    Hu J, Yu Y, Jiao B, Ning S, Dong H, Hou X, Zhang Z, Wu Z 2016 Org. Electron. 31 234

    [58]

    Schwab T, Fuchs C, Scholz R, Zakhidov A, Leo K, Gather M C 2014 Opt. Express 22 7524

    [59]

    Chen S, Zhao Z, Tang B Z, Kwok H S 2012 Org. Electron. 13 1996

    [60]

    Riedel B, Hauss J, Aichholz M, Gall A, Lemmer U, Gerken M 2010 Org. Electron. 11 1172

    [61]

    Song H J, Han J, Lee G, Sohn J, Kwon Y, Choi M, Lee C 2018 Org. Electron. 52 230

    [62]

    Niesen B, Rand B P, van Dorpe P, Cheyns D, Tong L, Dmitriev A, Heremans P 2013 Adv. Energy Mater. 3 145

    [63]

    Lee C, Han K H, Kim K H, Kim J J 2016 Opt. Express 24 A488

    [64]

    Chen K Y, Chang Y T, Ho Y H, Lin H Y, Lee J H, Wei M K 2010 Opt. Express 18 3238

    [65]

    Park J M, Gan Z, Leung W Y, Liu R, Ye Z, Constant K, Shinar J, Shinar R, Ho K M 2011 Opt. Express 19 A786

    [66]

    Hwang J H, Park T H, Lee H J, Choi K B, Park Y W, Ju B K 2013 Opt. Lett. 38 4182

    [67]

    Thomschke M, Reineke S, Lssem B, Leo K 2012 Nano Lett. 12 424

    [68]

    Joo C W, Lee K, Lee J, Cho H, Shin J W, Cho N S, Moon J 2017 J. Lumin. 187 433

    [69]

    Kim Y Y, Park J J, Ye S J, Hyun W J, Im H G, Bae B S, Park O O 2016 RSC Adv. 6 65450

    [70]

    Xiang H Y, Li Y Q, Zhou L, Xie H J, Li C, Ou Q D, Chen L S, Lee C S, Lee S T, Tang J X 2015 ACS Nano 9 7553

    [71]

    Liu B, Wang L, Xu M, Tao H, Gao D, Zou J, Lan L, Ning H, Peng J, Cao Y 2014 J. Mater. Chem. C 2 9836

    [72]

    Ding L, Wang L W, Zhou L, Zhang F H 2016 Appl. Surf. Sci. 389 990

    [73]

    Kim K H, Park S Y 2016 Org. Electron. 36 103

    [74]

    Schaefer T, Schwab T, Lenk S, Gather M C 2015 Appl. Phys. Lett. 107

    [75]

    Liu R, Ye Z, Park J M, Cai M, Chen Y, Ho K M, Shinar R, Shinar J 2011 Opt. Express 19 A1272

    [76]

    Go H, Koh T W, Jung H, Park C Y, Ha T W, Kim E M, Kang M H, Yong H K, Yun C 2017 Org. Electron. 47 117

    [77]

    Pyo B, Joo C W, Kim H S, Kwon B H, Lee J I, Lee J, Suh M C 2016 Nanoscale 8 8575

    [78]

    Lim B W, Suh M C 2014 Nanoscale 6 14446

    [79]

    Lee K M, Fardel R, Zhao L, Arnold C B, Rand B P, Lee K M, Fardel R, Zhao L, Arnold C B, Rand B P 2017 Org. Electron. 51 471

    [80]

    Jeong S M, Takezoe H 2012 Effect of Photonic Structures in Organic Light-Emitting Diodes-Light Extraction and Polarization Characteristics (INTECH Open Access Publisher) pp66--67

    [81]

    Kwok H S, Chen S 2010 Opt. Express 18 37

    [82]

    Zhou J, Ai N, Wang L, Zheng H, Luo C, Jiang Z, Yu S, Cao Y, Wang J 2011 Org. Electron. 12 648

    [83]

    Lee I, Park J Y, Gim S, Ham J, Son J H, Lee J L 2015 Small 11 4480

    [84]

    Riedel B, Shen Y X, Hauss J, Aichholz M, Tang X C, Lemmer U, Gerken M 2011 Adv. Mater. 23 740

    [85]

    Park Y, Muller-Meskamp L, Vandewal K, Leo K 2016 Appl. Phys. Lett. 108

    [86]

    Liang H, Zhu R, Dong Y, Wu S T, Li J, Wang J, Zhou J 2015 Opt. Express 23 12910

    [87]

    Chang C H, Chang K Y, Lo Y J, Chang S J, Chang H H 2012 Org. Electron. 13 1073

    [88]

    Chang C H, Chang T F, Liang Y H, Lo Y J, Wu Y J, Chang H H 2016 Jpn. J. Appl. Phys. 55

    [89]

    Chang H W, Lee J, Hofmann S, Yong H K, Mllermeskamp L, Lssem B, Wu C C, Leo K, Gather M C 2013 J. Appl. Phys. 113 234

    [90]

    Joo C W, Shin J W, Moon J, Huh J W, Cho D H, Lee J, Park S K, Cho N S, Han J H, Chu H Y, Lee J I 2016 Org. Electron. 29 72

    [91]

    Lee K, Shin J W, Park J H, Lee J, Joo C W, Lee J I, Cho D H, Lim J T, Oh M C, Ju B K 2016 ACS Appl. Mat. Interfaces 8 17409

    [92]

    Jin H K, Han J W, Dong J L, Entifar S A N, Ramadhan Z R, Lim K T, Yong H K 2017 Org. Electron. 54 204

    [93]

    Yuan S, Hao Y, Miao Y, Sun Q, Li Z, Cui Y, Wang H, Xu B 2017 RSC Adv. 7 43987

    [94]

    To B D, Yu C C, Ho J R, Kan H C, Hsu C C 2018 Org. Electron. 53 160

    [95]

    Shi J, Wang L, Li L, Luo Y, Ding Y 2013 Opt. Lett. 38 2394

    [96]

    Wang R, Xu L H, Li Y Q, Zhou L, Li C, Ou Q D, Chen J D, Shen S, Tang J X 2015 Adv. Opt. Mater. 3 203

    [97]

    Ou Q D, Xu L H, Zhang W Y, Li Y Q, Zhang Y B, Zhao X D, Chen J D, Tang J X 2016 Opt. Express 24 A674

    [98]

    Cho H, Kim E, Moon J, Joo C W, Kim E, Park S K, Lee J, Yu B G, Lee J I, Yoo S 2017 Org. Electron. 46 139

    [99]

    Lee C, Kim J J 2013 Small 9 3858

    [100]

    Hobson P A, Wedge S, Wasey J A E, Sage I, Barnes W L 2002 Adv. Mater. 14 1393

    [101]

    Koo W H, Jeong S M, Nishimura S, Araoka F, Ishikawa K, Toyooka T, Takezoe H 2011 Adv. Mater. 23 1003

    [102]

    Bai Y, Feng J, Liu Y F, Song J F, Simonen J, Jin Y, Chen Q D, Zi J, Sun H B 2011 Org. Electron. 12 1927

    [103]

    Jin Y, Feng J, Zhang X L, Bi Y G, Bai Y, Chen L, Lan T, Liu Y F, Chen Q D, Sun H B 2012 Adv. Mater. 24 1187

    [104]

    Jiao B, Yu Y, Dai Y, Hou X, Wu Z 2015 Opt. Express 23 4055

    [105]

    Kim D H, Kim J Y, Kim D Y, Han J H, Choi K C 2014 Org. Electron. 15 3183

    [106]

    Xu L H, Ou Q D, Li Y Q, Zhang Y B, Zhao X D, Xiang H Y, Chen J D, Zhou L, Lee S T, Tang J X 2016 ACS Nano 10 1625

    [107]

    Zhang Y B, Ou Q D, Li Y Q, Chen J D, Zhao X D, Wei J, Xie Z Z, Tang J X 2017 Opt. Express 25 15662

    [108]

    Park B, Jeon H G 2011 Opt. Express 19 A1117

  • [1] Peng Teng, Wang Hui-Yao, Zhao Xi, Liu Jun-Hong, Wang Bo, Wang Jing-Jing, Zhou Yin-Qiong, Zhang Ke-Yi, Yang Jun, Xiong Zu-Hong. Modulation of half-band-gap turn-on electroluminescence in Rubrene/C60 based OLEDs by electron injection layer mobility. Acta Physica Sinica, 2024, 73(21): 217202. doi: 10.7498/aps.73.20240864
    [2] Ren Xing, Yu Hong-Yu, Zhang Yong. Electroluminescence efficiency and stability of near ultraviolet organic light-emitting diodes based on BCPO luminous materials. Acta Physica Sinica, 2024, 73(4): 047801. doi: 10.7498/aps.73.20231301
    [3] Bao Xi, Guan Yun-Xia, Li Wan-Jiao, Song Jia-Yi, Chen Li-Jia, Xu Shuang, Peng Ke-Ao, Niu Lian-Bin. Carrier ladder effect regulated dissociation and scattering of triplet excitons in OLED. Acta Physica Sinica, 2023, 72(21): 217101. doi: 10.7498/aps.72.20230851
    [4] Cheng Yan-Qin, Xu Juan-Juan, Wang You-Di, Li Zhuo-Xi, Chen Jiang-Shan. Steady-state and transient optoelectronic characteristics of styrene-and quinoline-based derivative. Acta Physica Sinica, 2022, 71(1): 018501. doi: 10.7498/aps.71.20211171
    [5] Steady-State and Transient Optoelectronic Characteristics of a Styrene- and Quinoline-Based Derivative. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211171
    [6] Gong Zhi-Na, Yun Feng, Ding Wen, Zhang Ye, Guo Mao-Feng, Liu Shuo, Huang Ya-Ping, Liu Hao, Wang Shuai, Feng Lun-Gang, Wang Jiang-Teng. Increase in light extraction efficiency of vertical light emitting diodes by a photo-electro-chemical etching method. Acta Physica Sinica, 2015, 64(1): 018501. doi: 10.7498/aps.64.018501
    [7] Zhang Ya-Nan, Wang Jun-Feng. Improvement of the color-stability in top-emitting white organic light-emitting diodes by utilizing step-doping in emission layers. Acta Physica Sinica, 2015, 64(9): 097801. doi: 10.7498/aps.64.097801
    [8] Huang Di, Xu Zheng, Zhao Su-Ling. Enhanced performance of organic light-emitting diodes by using PTB7 as anode modification layer. Acta Physica Sinica, 2014, 63(2): 027301. doi: 10.7498/aps.63.027301
    [9] Liu Bai-Quan, Lan Lin-Feng, Zou Jian-Hua, Peng Jun-Biao. A novel organic light-emitting diode by utilizing double hole injection layer. Acta Physica Sinica, 2013, 62(8): 087302. doi: 10.7498/aps.62.087302
    [10] Yue Qing-Yang, Kong Fan-Min, Li Kang, Zhao Jia. Study on the light extraction efficiency of GaN-based light emitting diode by using the defects of the photonic crystals. Acta Physica Sinica, 2012, 61(20): 208502. doi: 10.7498/aps.61.208502
    [11] Zhang Yong, Liu Ya-Li, Jiao Wei, Chen Lin, Xiong Zu-Hong. Magnetoconductance effect in organic light-emitting devices. Acta Physica Sinica, 2012, 61(11): 117106. doi: 10.7498/aps.61.117106
    [12] Jiao Wei, Lei Yan-Lian, Zhang Qiao-Ming, Liu Ya-Li, Chen Lin, You Yin-Tao, Xiong Zu-Hong. Light-induced magnetoconductance effect in organic light-emitting diodes. Acta Physica Sinica, 2012, 61(18): 187305. doi: 10.7498/aps.61.187305
    [13] Chen Ping, Zhao Li, Duan Yu, Cheng Gang, Zhao Yi, Liu Shi-Yong. A novel charge generation layer for stacked organic light-emitting devices. Acta Physica Sinica, 2011, 60(9): 097203. doi: 10.7498/aps.60.097203
    [14] Liu Nan-Liu, Ai Na, Hu Dian-Gang, Yu Shu-Fu, Peng Jun-Biao, Cao Yong, Wang Jian. Effect of spin-coating process on the performance of passive-matrix organic light-emitting display. Acta Physica Sinica, 2011, 60(8): 087805. doi: 10.7498/aps.60.087805
    [15] Yang Yang, Chen Shu-Fen, Xie Jun, Chen Chun-Yan, Shao Ming, Guo Xu, Huang Wei. Comprehensive Survey for the Frontier Disciplines. Acta Physica Sinica, 2011, 60(4): 047809. doi: 10.7498/aps.60.047809
    [16] Cheng Ping, Gao Feng, Chen Xiang-Dong, Yang Ji-Ping. Effect of the electric field on the decay of excited states in poly-phenylenevinylene. Acta Physica Sinica, 2010, 59(4): 2831-2835. doi: 10.7498/aps.59.2831
    [17] Zhang Yong, Liu Rong, Lei Yan-Lian, Chen Ping, Zhang Qiao-Ming, Xiong Zu-Hong. Magnetoconductance in Alq3-based organic light-emitting diodes. Acta Physica Sinica, 2010, 59(8): 5817-5822. doi: 10.7498/aps.59.5817
    [18] Li Chun, Peng Jun-Biao, Zeng Wen-Jin. Organic red light-emitting diodes with a soluble luminescent compound and a novel TPBI/Ag cathode. Acta Physica Sinica, 2009, 58(3): 1992-1996. doi: 10.7498/aps.58.1992
    [19] Zhang Xiu-Long, Yang Sheng-Yi, Lou Zhi-Dong, Hou Yan-Bing. Dynamic electrical characteristics of organic light-emitting diodes. Acta Physica Sinica, 2007, 56(3): 1632-1636. doi: 10.7498/aps.56.1632
    [20] Wang Jun, Wei Xiao-Qiang, Rao Hai-Bo, Cheng Jian-Bo, Jiang Ya-Dong. High-efficiency and high-stability phosphorescent OLED based on new Ir complex. Acta Physica Sinica, 2007, 56(2): 1156-1161. doi: 10.7498/aps.56.1156
Metrics
  • Abstract views:  7990
  • PDF Downloads:  267
  • Cited By: 0
Publishing process
  • Received Date:  21 June 2018
  • Accepted Date:  18 July 2018
  • Published Online:  20 October 2019

/

返回文章
返回