Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Concentration and thermal quenching of SrGdLiTeO6: Eu3+ red-emitting phosphor for white light-emitting diode

Zhao Wang Ping Zhao-Yan Zheng Qing-Hua Zhou Wei-Wei

Citation:

Concentration and thermal quenching of SrGdLiTeO6: Eu3+ red-emitting phosphor for white light-emitting diode

Zhao Wang, Ping Zhao-Yan, Zheng Qing-Hua, Zhou Wei-Wei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A series of SrGd1-xLiTeO6:xEu3+ (x=0.1-1) red-emitting phosphors, prepared by high-temperature solid-state reaction at 1100℃, is thoroughly investigated by means of X-ray diffraction, diffuse reflectance spectra, photoluminescence spectra, and electroluminescence spectra. These double-perovskite-type phosphors crystallize into monoclinic systems with space group P21/n(14), accommodate Eu3+ in a highly distorted C1 site symmetry without inversion center, and facilitate the enhancing of the 5D07F2 hypersensitive transition. The excitation spectra, emission spectra and decay curves indicate that the optimum doping concentration of Eu3+ is x=0.6. The SrGd0.4LiTeO6:0.6Eu3+ presents the strongest excitation peak at 395 nm, which is adequate for near-UV light-emitting diode (LED) pumping; meanwhile, it exhibits an intense red emission with chromaticity coordinates of (0.6671, 0.3284), an asymmetry ratio of 7.56, a color purity of 98.6%, and a luminous efficacy of radiation of 249 lm/W. The fluorescence lifetime is 721 μs, from which the internal quantum efficiency is determined to be 89.7% via the Judd-Ofelt analysis. The formula proposed by van Uiter (van Uitert L G 1967 J. Electrochem. Soc. 114 1048), is used to elucidate the energy transfer mechanism. However, the plot of log(I/x)-log(x) produces a confusing index s=4.26, which makes it difficult to distinguish the dipole-dipole interaction from the exchange interaction. After analyzing the reason of error, we present a new plot of log(I0'/I-1)-log(x), in which I0'=I0/x0 and I'=I/x, with x0 corresponding to the low doping content without nonradiative energy transfer. This plot gives rise to s=5.25, a more reasonable value for the dipole-dipole interaction. The integrated emission intensity at 423 K is as high as 85.2% of that at ambient temperature. The thermal activation energy is determined to be 0.2941 eV according to the model based on a temperature-dependent pathway through a charge transfer state. The prototypical LED based on it can emit a bright red light beam. In conclusion, the phosphor exhibits favorable luminous efficiency, color purity and thermal stability of luminescence, which promises solid-state lighting and display applications.
    • Funds: Project supported by the Natural Science Foundation of Anhui Province, China (Grant No. 1708085QE91), the Scientific Research Foundation of the Education Department of Anhui Province, China (Grant Nos. gxyqZD2016259, gxyqZD2016260, KJ2016A673, gxbjZD37), the Innovative Research Team of Huainan City, China (Grant No. 2016A24), and the Research Program of Huainan Normal University, China (Grant Nos. 2015hsjyxm07, 2015hsyxkc15, 2017hsyxkc70).
    [1]

    Nakamura S, Senoh M, Iwasa N, Nagahama S 1995 Appl. Phys. Lett. 67 1868

    [2]

    Lin C C, Meijerink A, Liu R S 2016 J. Phys. Chem. Lett. 7 495

    [3]

    Pust P, Schmidt P J, Schnick W 2015 Nat. Mater. 14 454

    [4]

    Li S, Xie R J, Takeda T, Hirosaki N 2018 ECS J. Solid State SC 7 R3064

    [5]

    Pust P, Weiler V, Hecht C, Tücks A, Wochnik A S, Henß A, Wiechert D, Scheu C, Schmidt P J, Schnick W 2014 Nat. Mater. 13 891

    [6]

    Yoshimura K, Fukunaga H, Izumi M, Takahashi K, Xie R J, Hirosaki N 2017 Jpn. J. Appl. Phys. 56 041701

    [7]

    Meyer J, Tappe F 2015 Adv. Opt. Mater. 3 424

    [8]

    Chen D, Zhou Y, Zhong J 2016 RSC Adv. 6 86285

    [9]

    Judd B R 1966 J. Chem. Phys. 44 839

    [10]

    Li L, Chang W, Chen W, Feng Z, Zhao C, Jiang P, Wang Y, Zhou X, Suchocki A 2017 Ceram. Int. 43 2720

    [11]

    Sharits A R, Khoury J F, Woodward P M 2016 Inorg. Chem. 55 12383

    [12]

    Liu Q, Wang L, Huang W, Li X, Yu M, Zhang Q 2018 Ceram. Int. 44 1662

    [13]

    Li X, Liu Q, Huang W, Chen S, Wang L, Yu M, Zhang Q 2018 Ceram. Int. 44 1909

    [14]

    Zhong J S, Gao H B, Yuan Y J, Chen L F, Chen D Q, Ji Z G 2018 J. Alloys Compd. 735 2303

    [15]

    Yin X, Wang Y, Huang F, Xia Y, Wan D, Yao J 2011 J. Solid State Chem. 184 3324

    [16]

    Fu A, Guan A, Gao F, Zhang X, Zhou L, Meng Y, Pan H 2017 Opt. Laser Technol. 96 43

    [17]

    Yin X, Yao J, Wang Y, Zhao C, Huang F 2012 J. Lumin. 132 1701

    [18]

    Zhang L, Sun B, Shao C, Zhen F, Wei S, Bu W, Yao Q, Jiang Z, Chen H 2018 Ceram. Int. 44 17305

    [19]

    Sivakumar V, Varadaraju U V 2008 J. Solid State Chem. 181 3344

    [20]

    Li X, Li X, Wang X, Tong L, Cheng L, Sun J, Zhang J, Xu S, Chen B 2017 J. Mater. Sci. 52 935

    [21]

    Sun H, Zhang Q, Wang X, Zhang T 2014 Mater. Lett. 131 164

    [22]

    Liu Q, Wang L, Huang W, Zhang L, Yu M, Zhang Q 2017 J. Alloys Compd. 717 156

    [23]

    Li Q, Zhang L, Zhen F, Wei S, Bu W, Yao Q, Jiang Z, Chen H 2018 Ceram. Int. 44 15565

    [24]

    Jiao M, Yang C, Liu M, Xu Q, Yu Y, You H 2017 Opt. Mater. Express 7 2660

    [25]

    Liang Y, Noh H M, Ran W, Park S H, Choi B C, Jeong J H, Kim K H 2017 J. Alloys Compd. 716 56

    [26]

    Sletnes M, Lindgren M, Valmalette J C, Wagner N P, Grande T, Einarsrud M A 2016 J. Solid State Chem. 237 72

    [27]

    Yu R, Wang C, Chen J, Wu Y, Li H, Ma H 2014 ECS J. Solid State SC 3 R33

    [28]

    Nguyen H, Kim S, Yeo I, Mho S 2012 J. Electrochem. Soc. 159 J54

    [29]

    López M L, Alvarez I, Gaitán M, Jerez A, Pico C, Veiga M L 1993 Solid State Ionics 63–65 599

    [30]

    Amrithakrishnan B, Subodh G 2017 Mater. Res. Bull. 93 177

    [31]

    Park J H, Woodward P M 2000 Int. J. Inorg. Mater. 2 153

    [32]

    Korotkov A S, Atuchin V V 2010 J. Phys. Chem. Solids 71 958

    [33]

    Judd B R 1962 Phys. Rev. 127 750

    [34]

    Ofelt G S 1962 J. Chem. Phys. 37 511

    [35]

    Werts M H V, Jukes R T F, Verhoeven J W 2002 Phys. Chem. Chem. Phys. 4 1542

    [36]

    Tanner P A 2013 Chem. Soc. Rev. 42 5090

    [37]

    Wiglusz R J, Pazik R, Lukowiak A, Strek W 2011 Inorg. Chem. 50 1321

    [38]

    Jørgensen C K, Reisfeld R 1983 J. Less-Comm. Met. 93 107

    [39]

    Blasse G 1968 Phys. Lett. A 28 444

    [40]

    van Uitert L G 1967 J. Electrochem. Soc. 114 1048

    [41]

    Riseberg L A, Moos H W 1968 Phys. Rev. 174 429

    [42]

    Fonger W H, Struck C W 1970 J. Chem. Phys. 52 6364

    [43]

    Liu Q, Li X, Zhang B, Wang L, Zhang Q, Zhang L 2016 Ceram. Int. 42 15294

    [44]

    Liang J, Zhao S, Yuan X, Li Z 2018 Opt. Laser Technol. 101 451

  • [1]

    Nakamura S, Senoh M, Iwasa N, Nagahama S 1995 Appl. Phys. Lett. 67 1868

    [2]

    Lin C C, Meijerink A, Liu R S 2016 J. Phys. Chem. Lett. 7 495

    [3]

    Pust P, Schmidt P J, Schnick W 2015 Nat. Mater. 14 454

    [4]

    Li S, Xie R J, Takeda T, Hirosaki N 2018 ECS J. Solid State SC 7 R3064

    [5]

    Pust P, Weiler V, Hecht C, Tücks A, Wochnik A S, Henß A, Wiechert D, Scheu C, Schmidt P J, Schnick W 2014 Nat. Mater. 13 891

    [6]

    Yoshimura K, Fukunaga H, Izumi M, Takahashi K, Xie R J, Hirosaki N 2017 Jpn. J. Appl. Phys. 56 041701

    [7]

    Meyer J, Tappe F 2015 Adv. Opt. Mater. 3 424

    [8]

    Chen D, Zhou Y, Zhong J 2016 RSC Adv. 6 86285

    [9]

    Judd B R 1966 J. Chem. Phys. 44 839

    [10]

    Li L, Chang W, Chen W, Feng Z, Zhao C, Jiang P, Wang Y, Zhou X, Suchocki A 2017 Ceram. Int. 43 2720

    [11]

    Sharits A R, Khoury J F, Woodward P M 2016 Inorg. Chem. 55 12383

    [12]

    Liu Q, Wang L, Huang W, Li X, Yu M, Zhang Q 2018 Ceram. Int. 44 1662

    [13]

    Li X, Liu Q, Huang W, Chen S, Wang L, Yu M, Zhang Q 2018 Ceram. Int. 44 1909

    [14]

    Zhong J S, Gao H B, Yuan Y J, Chen L F, Chen D Q, Ji Z G 2018 J. Alloys Compd. 735 2303

    [15]

    Yin X, Wang Y, Huang F, Xia Y, Wan D, Yao J 2011 J. Solid State Chem. 184 3324

    [16]

    Fu A, Guan A, Gao F, Zhang X, Zhou L, Meng Y, Pan H 2017 Opt. Laser Technol. 96 43

    [17]

    Yin X, Yao J, Wang Y, Zhao C, Huang F 2012 J. Lumin. 132 1701

    [18]

    Zhang L, Sun B, Shao C, Zhen F, Wei S, Bu W, Yao Q, Jiang Z, Chen H 2018 Ceram. Int. 44 17305

    [19]

    Sivakumar V, Varadaraju U V 2008 J. Solid State Chem. 181 3344

    [20]

    Li X, Li X, Wang X, Tong L, Cheng L, Sun J, Zhang J, Xu S, Chen B 2017 J. Mater. Sci. 52 935

    [21]

    Sun H, Zhang Q, Wang X, Zhang T 2014 Mater. Lett. 131 164

    [22]

    Liu Q, Wang L, Huang W, Zhang L, Yu M, Zhang Q 2017 J. Alloys Compd. 717 156

    [23]

    Li Q, Zhang L, Zhen F, Wei S, Bu W, Yao Q, Jiang Z, Chen H 2018 Ceram. Int. 44 15565

    [24]

    Jiao M, Yang C, Liu M, Xu Q, Yu Y, You H 2017 Opt. Mater. Express 7 2660

    [25]

    Liang Y, Noh H M, Ran W, Park S H, Choi B C, Jeong J H, Kim K H 2017 J. Alloys Compd. 716 56

    [26]

    Sletnes M, Lindgren M, Valmalette J C, Wagner N P, Grande T, Einarsrud M A 2016 J. Solid State Chem. 237 72

    [27]

    Yu R, Wang C, Chen J, Wu Y, Li H, Ma H 2014 ECS J. Solid State SC 3 R33

    [28]

    Nguyen H, Kim S, Yeo I, Mho S 2012 J. Electrochem. Soc. 159 J54

    [29]

    López M L, Alvarez I, Gaitán M, Jerez A, Pico C, Veiga M L 1993 Solid State Ionics 63–65 599

    [30]

    Amrithakrishnan B, Subodh G 2017 Mater. Res. Bull. 93 177

    [31]

    Park J H, Woodward P M 2000 Int. J. Inorg. Mater. 2 153

    [32]

    Korotkov A S, Atuchin V V 2010 J. Phys. Chem. Solids 71 958

    [33]

    Judd B R 1962 Phys. Rev. 127 750

    [34]

    Ofelt G S 1962 J. Chem. Phys. 37 511

    [35]

    Werts M H V, Jukes R T F, Verhoeven J W 2002 Phys. Chem. Chem. Phys. 4 1542

    [36]

    Tanner P A 2013 Chem. Soc. Rev. 42 5090

    [37]

    Wiglusz R J, Pazik R, Lukowiak A, Strek W 2011 Inorg. Chem. 50 1321

    [38]

    Jørgensen C K, Reisfeld R 1983 J. Less-Comm. Met. 93 107

    [39]

    Blasse G 1968 Phys. Lett. A 28 444

    [40]

    van Uitert L G 1967 J. Electrochem. Soc. 114 1048

    [41]

    Riseberg L A, Moos H W 1968 Phys. Rev. 174 429

    [42]

    Fonger W H, Struck C W 1970 J. Chem. Phys. 52 6364

    [43]

    Liu Q, Li X, Zhang B, Wang L, Zhang Q, Zhang L 2016 Ceram. Int. 42 15294

    [44]

    Liang J, Zhao S, Yuan X, Li Z 2018 Opt. Laser Technol. 101 451

  • [1] Su Xiao-Na, Wan Ying, Zhou Zhi-Xuan, TushaguAbuduwufu, Hu Lian-Lian, AierkenSidike. Luminescence properties and energy transfer of Na2CaSiO4:Sm3+, Eu3+ phosphor. Acta Physica Sinica, 2017, 66(23): 230701. doi: 10.7498/aps.66.230701
    [2] Lü Zhao-Cheng, Li Ying, Quan Gui-Ying, Zheng Qing-Hua, Zhou Wei-Wei, Zhao Wang. Preparation and photoluminescent properties of near-UV broadband-excited red phosphor (Gd1-xEux)6(Te1-yMoy)O12 for white-LEDs. Acta Physica Sinica, 2017, 66(11): 117801. doi: 10.7498/aps.66.117801
    [3] Sun Jia-Shi, Li Xiang-Ping, Wu Jin-Lei, Li Shu-Wei, Shi Lin-Lin, Xu Sai, Zhang Jin-Su, Cheng Li-Hong, Chen Bao-Jiu. Experimental optimal design on BaY2ZnO5: Tm3+/Yb3+ phosphor and its up-conversion luminescence property. Acta Physica Sinica, 2017, 66(10): 100201. doi: 10.7498/aps.66.100201
    [4] Zhao Cong, Meng Qing-Yu, Sun Wen-Jun. Luminescence properties of Eu3+ doped CaMoO4 micron phosphors. Acta Physica Sinica, 2015, 64(10): 107803. doi: 10.7498/aps.64.107803
    [5] Xie Di-Ni, Peng Hong-Shang, Huang Shi-Hua, You Fang-Tian, Wang Xiao-Hui. Hydrothermal diffusion of Eu3+ in EuVO4@YVO4 core-shell nanoparticles and its influence on luminescent properties. Acta Physica Sinica, 2014, 63(14): 147801. doi: 10.7498/aps.63.147801
    [6] Zhong Hong-Mei, Liu Qian, Zhou Yao, Zhuang Jian-Dong, Zhou Hu. Synthesis and photoluminescence of AlON:Ce3+ phosphors. Acta Physica Sinica, 2013, 62(8): 087804. doi: 10.7498/aps.62.087804
    [7] Liu Hong-Li, Hao Yu-Ying, Xu Bing-She. Preparation and photoluminescence of LiSrBO3:Eu3+ red-emitting phosphors for white leds. Acta Physica Sinica, 2013, 62(10): 108504. doi: 10.7498/aps.62.108504
    [8] Liang Feng, Hu Yi-Hua, Chen Li, Wang Xiao-Juan. Energy transfer between WO42- groups and Eu3+ in CaWO4:Eu3+ phosphor. Acta Physica Sinica, 2013, 62(18): 183302. doi: 10.7498/aps.62.183302
    [9] Li Hai-Ling, Wang Yin-Hai, Zhang Wan-Xin, Wang Xian-Sheng, Zhao Hui. Preparation and red long-lasting luminescence properties of Eu3+ doped CaO. Acta Physica Sinica, 2012, 61(22): 227802. doi: 10.7498/aps.61.227802
    [10] Wang Qian, Ci Zhi-Peng, Wang Yu-Hua, Zhu Ge, Wen Yan, Liu Bi-Tao, Que Mei-Dan. Preparation and luminescence properties of a red phosphor Mg5SnB2O10:Eu3+, Bi3+ for light emitting diode. Acta Physica Sinica, 2012, 61(21): 217802. doi: 10.7498/aps.61.217802
    [11] Meng Qing-Yu, Zhang Qing, Li Ming, Liu Lin-Feng, Qu Xiu-Rong, Wan Wei-Long, Sun Jiang-Ting. Study of concentration dependence of luminescent properties for Eu3+ doped CaWO4 red phosphors. Acta Physica Sinica, 2012, 61(10): 107804. doi: 10.7498/aps.61.107804
    [12] Feng Xiao-Hui, Meng Qing-Yu, Sun Jiang-Ting, Lü Shu-Chen, Sun Li-nan. Luminescent properties of Eu3+ doped Gd2W2O9 and Gd2(WO4)3 nanophosphors. Acta Physica Sinica, 2011, 60(3): 037806. doi: 10.7498/aps.60.037806
    [13] Zhou Ya-Xun, Dai Shi-Xun, Zhou Ling, Xu Tie-Feng, Nie Qiu-Hua, Huang Shang-Lian. Energy transfer via cooperative upconversion between Er3+ ions in a tellurite glass. Acta Physica Sinica, 2009, 58(2): 1261-1268. doi: 10.7498/aps.58.1261
    [14] Yan Feng-Ping, Wang Lin, Wei Huai, Fu Yong-Jun, Jian Wei, Zheng Kai, Mao Xiang-Qiao, Li Jian, Liu Li-Song, Peng Jian, Jian Shui-Sheng. Investigation of co-doping Al3+ in ytterbium-doped silica-based fiber. Acta Physica Sinica, 2009, 58(3): 1793-1797. doi: 10.7498/aps.58.1793
    [15] Han Lin, Song Feng, Zou Chang-Guang, Su Jing, Yan Li-Hua, Tian Jian-Guo, Zhang Guang-Yin. Investigation of concentration quenching effect in Tm3+-doped NaY(WO4)2 crystal. Acta Physica Sinica, 2007, 56(7): 4187-4193. doi: 10.7498/aps.56.4187
    [16] Wang Xiao-Dan, Zhao Zhi-Wei, Xu Xiao-Dong, Song Ping-Xin, Jiang Ben-Xue, Xu Jun, Deng Pei-Zhen. Spectra analysis of Yb: Y3Al5O12 crystals with different Yb doping concentration. Acta Physica Sinica, 2006, 55(8): 4358-4364. doi: 10.7498/aps.55.4358
    [17] Yu Chun-Lei, Dai Shi-Xun, Zhou Gang, Zhang Jun-Jie, Hu Li-Li, Jiang Zhong-Hong. Concentration quenching mechanism in erbium-doped tellurite glass. Acta Physica Sinica, 2005, 54(8): 3894-3899. doi: 10.7498/aps.54.3894
    [18] Liu Huang-Qing, Wang Ling-Ling, Qin Wei-Ping. Luminescence of Eu3+ Ions in nanocrystalline zirconia. Acta Physica Sinica, 2004, 53(1): 282-285. doi: 10.7498/aps.53.282
    [19] Peng Hong-Shang, Song Hong-Wei, Chen Biao-Jiu, Wang Ji-Wei, Lv Shao-Zhe, Kong Xiang-Gui, Li Dian-Chao. . Acta Physica Sinica, 2002, 51(12): 2875-2880. doi: 10.7498/aps.51.2875
    [20] PEI HUI-YUAN, FANG JIA-XIONG. QUENCHING OF THE FLUORESCENCE BACKGROUND IN Cd0.96Zn0.04Te RAMAN SPECTRUM AT LOW TEMPERATURES. Acta Physica Sinica, 2001, 50(5): 968-972. doi: 10.7498/aps.50.968
Metrics
  • Abstract views:  6474
  • PDF Downloads:  81
  • Cited By: 0
Publishing process
  • Received Date:  13 August 2018
  • Accepted Date:  21 October 2018
  • Published Online:  20 December 2019

/

返回文章
返回