Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Optical properties of niobium nitride nanowires

Wu Yang Chen Qi Xu Rui-Ying Ge Rui Zhang Biao Tao Xu Tu Xue-Cou Jia Xiao-Qing Zhang La-Bao Kang Lin Wu Pei-Heng

Citation:

Optical properties of niobium nitride nanowires

Wu Yang, Chen Qi, Xu Rui-Ying, Ge Rui, Zhang Biao, Tao Xu, Tu Xue-Cou, Jia Xiao-Qing, Zhang La-Bao, Kang Lin, Wu Pei-Heng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Niobium nitride (NbN) nanowires are commonly used as photosensitive materials for superconducting nanowire single-photon detectors (SNSPDs). Their optical properties are the key factors influencing the performance of SNSPD. According to the experimental data and simulation results, in this paper we systematically study the optical properties of various niobium nitride nanowire detector device structures, and characterize the reflection spectra and transmission spectra of the following four device structures:1) Backside optical devices with SiO2 as the antireflection layer, 2) backside optical devices with SiN as the antireflection layer, 3) front-facing optical devices with Au+SiN as a mirror, and 4) front-facing optical devices with distributed Bragg reflector (DBR) as a mirror. The NbN films with different thickness are grown on the basis of the four device structures, and the absorption efficiencies of the NbN films with different thickness are observed. The relationships between the optimal NbN thickness and the optical absorption rate for different device structures are found as follows:The maximum absorption rate of NbN on the SiO2 antireflection layer is 91.7% at 1606 nm, while the absorption rates of the remaining structures at the optimal thickness of NbN can reach 99% or more. The absorption rate of the SiN device, the Au+SiN device and the DBR device are 99.3%, 99.8% and 99.9%, respectively. The measured results and simulation structure of DBR device are analyzed. These results are of significance for guiding the design and development of high efficiency SNSPD.
    [1]

    Gol'tsman G N, Okunev O, Chulkova G, Lipatov A, Semenov A, Smirnov K, Voronov B, Dzardanov A, Williams C, Sobolewski R 2001 Appl. Phys. Lett. 79 705

    [2]

    Marsili F, Verma V B, Stern J A, Harrington S, Lita A E, Gerrits T, Vayshenker I, Baek B, Shaw M D, Mirin R P, Nam S W 2013 Nat. Photon. 7 210

    [3]

    Zhang L, Kang L, Chen J, Zhong Y, Zhao Q, Jia T, Cao C, Jin B, Xu W, Sun G, Wu P 2011 Appl. Phys. B 102 867

    [4]

    Wu J, You L, Chen S, Li H, He Y, Lv C, Wang Z, Xie X 2017 Appl. Opt. 56 2195

    [5]

    Korneeva Y, Florya I, Semenov A, Korneev A, Goltsman G 2011 IEEE Trans. Appl. Supercond. 21 323

    [6]

    Hadfield R H, Habif J L, Schlafer J, Schwall R E, Nam S W 2006 Appl. Phys. Lett. 89 241129

    [7]

    Takesue H, Nam S W, Zhang Q, Hadfield R H, Honjo T, Tamaki K, Yamamoto Y 2007 Nat. Photon. 1 343

    [8]

    Li H, Chen S, You L, Meng W, Wu Z, Zhang Z, Tang K, Zhang L, Zhang W, Yang X, Liu X, Wang Z, Xie X 2016 Opt. Express 24 3535

    [9]

    Xue L, Li Z, Zhang L, Zhai D, Li Y, Zhang S, Li M, Kang L, Chen J, Wu P, Xiong Y 2016 Opt. Lett. 41 3848

    [10]

    Grein M E, Kerman A J, Dauler E A, Shatrovoy O, Molnar R J, Rosenberg D, Devoe C E, Murphy D V, Robinson B S, Boroson D M 2011 Design of a Ground-Based Optical Receiver for the Lunar Laser Communications Demonstration Santa Monica, CA, USA, May 11-13, 2011 p78

    [11]

    Zhao Q, Xia L, Wan C, Hu J, Jia T, Gu M, Zhang L, Kang L, Chen J, Zhang X, Wu P 2015 Sci. Rep. 5 10441

    [12]

    Zhu J, Chen Y, Zhang L, Jia X, Feng Z, Wu G, Yan X, Zhai J, Wu Y, Chen Q, Zhou X, Wang Z, Zhang C, Kang L, Chen J, Wu P 2017 Sci. Rep. 7 1

    [13]

    Qiu J, Xia H, Shangguan M, Dou X, Li M, Wang C, Shang X, Lin S, Liu J 2017 Opt. Lett. 42 4454

    [14]

    Shangguan M, Xia H, Wang C, Qiu J, Lin S, Dou X, Zhang Q, Pan J W 2017 Opt. Lett. 42 3541

    [15]

    Li H, Zhang L, You L, Yang X, Zhang W, Liu X, Chen S, Wang Z, Xie X 2015 Opt. Express 23 17301

    [16]

    Anant V, Kerman A J, Dauler E A, Yang J K W, Rosfjord K M, Berggren K K 2008 Opt. Express 16 10750

    [17]

    Rosfjord K M, Yang J K W, Dauler E A, Kerman A J, Anant V, Voronov B M, Gol'tsman G N, Berggren K K 2006 Opt. Express 14 527

    [18]

    Zhang L, Yan X, Jiang C, Zhang S, Chen Y, Chen J, Kang L, Wu P 2016 IEEE Photonics Technol. Lett. 28 2522

    [19]

    Zhang W J, You L X, Li H, Huang J, Lü C L, Zhang L, Liu X Y, Wu J J, Wang Z, Xie X M 2017 Sci. China Phys. Mech. Astron. 60 120314

    [20]

    Cristiano R, Parlato L, Nasti U, Ejrnaes M, Myoren H, Taino T, Sobolewski R, Pepe G P 2016 IEEE Trans. Appl. Supercond. 26 3

    [21]

    Akhlaghi M K, Schelew E, Young J F 2015 Nat. Commun. 6 8233

    [22]

    Wang Z, Kawakami A, Uzawa Y, Komiyama B, Wang Z, Kawakami A, Uzawa Y, Komiyama B 1996 J. Appl. Phys. 79 7837

  • [1]

    Gol'tsman G N, Okunev O, Chulkova G, Lipatov A, Semenov A, Smirnov K, Voronov B, Dzardanov A, Williams C, Sobolewski R 2001 Appl. Phys. Lett. 79 705

    [2]

    Marsili F, Verma V B, Stern J A, Harrington S, Lita A E, Gerrits T, Vayshenker I, Baek B, Shaw M D, Mirin R P, Nam S W 2013 Nat. Photon. 7 210

    [3]

    Zhang L, Kang L, Chen J, Zhong Y, Zhao Q, Jia T, Cao C, Jin B, Xu W, Sun G, Wu P 2011 Appl. Phys. B 102 867

    [4]

    Wu J, You L, Chen S, Li H, He Y, Lv C, Wang Z, Xie X 2017 Appl. Opt. 56 2195

    [5]

    Korneeva Y, Florya I, Semenov A, Korneev A, Goltsman G 2011 IEEE Trans. Appl. Supercond. 21 323

    [6]

    Hadfield R H, Habif J L, Schlafer J, Schwall R E, Nam S W 2006 Appl. Phys. Lett. 89 241129

    [7]

    Takesue H, Nam S W, Zhang Q, Hadfield R H, Honjo T, Tamaki K, Yamamoto Y 2007 Nat. Photon. 1 343

    [8]

    Li H, Chen S, You L, Meng W, Wu Z, Zhang Z, Tang K, Zhang L, Zhang W, Yang X, Liu X, Wang Z, Xie X 2016 Opt. Express 24 3535

    [9]

    Xue L, Li Z, Zhang L, Zhai D, Li Y, Zhang S, Li M, Kang L, Chen J, Wu P, Xiong Y 2016 Opt. Lett. 41 3848

    [10]

    Grein M E, Kerman A J, Dauler E A, Shatrovoy O, Molnar R J, Rosenberg D, Devoe C E, Murphy D V, Robinson B S, Boroson D M 2011 Design of a Ground-Based Optical Receiver for the Lunar Laser Communications Demonstration Santa Monica, CA, USA, May 11-13, 2011 p78

    [11]

    Zhao Q, Xia L, Wan C, Hu J, Jia T, Gu M, Zhang L, Kang L, Chen J, Zhang X, Wu P 2015 Sci. Rep. 5 10441

    [12]

    Zhu J, Chen Y, Zhang L, Jia X, Feng Z, Wu G, Yan X, Zhai J, Wu Y, Chen Q, Zhou X, Wang Z, Zhang C, Kang L, Chen J, Wu P 2017 Sci. Rep. 7 1

    [13]

    Qiu J, Xia H, Shangguan M, Dou X, Li M, Wang C, Shang X, Lin S, Liu J 2017 Opt. Lett. 42 4454

    [14]

    Shangguan M, Xia H, Wang C, Qiu J, Lin S, Dou X, Zhang Q, Pan J W 2017 Opt. Lett. 42 3541

    [15]

    Li H, Zhang L, You L, Yang X, Zhang W, Liu X, Chen S, Wang Z, Xie X 2015 Opt. Express 23 17301

    [16]

    Anant V, Kerman A J, Dauler E A, Yang J K W, Rosfjord K M, Berggren K K 2008 Opt. Express 16 10750

    [17]

    Rosfjord K M, Yang J K W, Dauler E A, Kerman A J, Anant V, Voronov B M, Gol'tsman G N, Berggren K K 2006 Opt. Express 14 527

    [18]

    Zhang L, Yan X, Jiang C, Zhang S, Chen Y, Chen J, Kang L, Wu P 2016 IEEE Photonics Technol. Lett. 28 2522

    [19]

    Zhang W J, You L X, Li H, Huang J, Lü C L, Zhang L, Liu X Y, Wu J J, Wang Z, Xie X M 2017 Sci. China Phys. Mech. Astron. 60 120314

    [20]

    Cristiano R, Parlato L, Nasti U, Ejrnaes M, Myoren H, Taino T, Sobolewski R, Pepe G P 2016 IEEE Trans. Appl. Supercond. 26 3

    [21]

    Akhlaghi M K, Schelew E, Young J F 2015 Nat. Commun. 6 8233

    [22]

    Wang Z, Kawakami A, Uzawa Y, Komiyama B, Wang Z, Kawakami A, Uzawa Y, Komiyama B 1996 J. Appl. Phys. 79 7837

  • [1] Zhao Zong-Yang, Li Ming, Zhou Tao. Single magnetic impurity effects in graphene based superconductors. Acta Physica Sinica, 2023, 72(20): 207401. doi: 10.7498/aps.72.20230830
    [2] Huang Jia-Bei, Lian Fu-Zhuo, Wang Zhi-Yuan, Sun Shi-Tao, Li Ming, Zhang Di, Cai Xiao-Fan, Ma Guo-Dong, Mai Zhi-Hong, Andy Shen, Wang Lei, Yu Ge-Liang. Two-dimensional van der Waals: Characterization and manipulation of superconductivity. Acta Physica Sinica, 2022, 71(18): 187401. doi: 10.7498/aps.71.20220638
    [3] Feng Xi-Lin, Jiang Kun, Hu Jiang-Ping. Kagome superconductors. Acta Physica Sinica, 2022, 71(11): 118103. doi: 10.7498/aps.71.20220891
    [4] Wang Xiao-Bo, Li Ke-Wei, Gao Li-Juan, Cheng Xu-Dong, Jiang Rong. Preparation and thermal stability of CrAlON based spectrally selective absorbing coatings. Acta Physica Sinica, 2021, 70(2): 027103. doi: 10.7498/aps.70.20200845
    [5] Shi Sheng-Cai, Li Jing, Zhang Wen, Miao Wei. Terahertz high-sensitivity superconducting detectors. Acta Physica Sinica, 2015, 64(22): 228501. doi: 10.7498/aps.64.228501
    [6] Yang Min-Yu, Song Jian-Jun, Zhang Jing, Tang Zhao-Huan, Zhang He-Ming, Hu Hui-Yong. Physical mechanism of uniaxial strain in nano-scale metal oxide semiconductor transistor caused by sin film. Acta Physica Sinica, 2015, 64(23): 238502. doi: 10.7498/aps.64.238502
    [7] Shi Liang-Ma, Zhou Ming-Jian, Zhu Ren-Yi. Evolution of vortex configuration for superconducting ring in the presence of an externally applied field. Acta Physica Sinica, 2014, 63(24): 247501. doi: 10.7498/aps.63.247501
    [8] Lin Zhen-Xu, Lin Ze-Wen, Zhang Yi, Song Chao, Guo Yan-Qing, Wang Xiang, Huang Xin-Tang, Huang Rui. Electroluminescence from Si nanostructure-based silicon nitride light-emitting devices. Acta Physica Sinica, 2014, 63(3): 037801. doi: 10.7498/aps.63.037801
    [9] Shi Liang-Ma, Zhang Shi-Jun, Zhu Ren-Yi. Numerical simulation of vortex structure in mesoscopic two-gap superconductor. Acta Physica Sinica, 2013, 62(9): 097401. doi: 10.7498/aps.62.097401
    [10] Zhou Yu, Zhang La-Bao, Jia Tao, Zhao Qing-Yuan, Gu Min, Qiu Jian, Kang Lin, Chen Jian, Wu Pei-Heng. Response properties of NbN superconductor nanowire for multi-photon. Acta Physica Sinica, 2012, 61(20): 208501. doi: 10.7498/aps.61.208501
    [11] Su Fa-Gang, Liang Jing-Qiu, Liang Zhong-Zhu, Zhu Wan-Bin. Study on the surface morphology and absorptivity of light-absorbing materials. Acta Physica Sinica, 2011, 60(5): 057802. doi: 10.7498/aps.60.057802
    [12] Hu Xin, Zhang Ji-Yan, Yang Guo-Hong, Liu Shen-Ye, Ding Yong-Kun. A multiple monochromatic X-ray imaging spectrometer based on flat Bragg mirror. Acta Physica Sinica, 2009, 58(9): 6397-6402. doi: 10.7498/aps.58.6397
    [13] Yang Peng-Fei, Bai Jin-Tao, Yang Xiao-Peng. The strict solutions to the field distribution of superconducting unbounded slab model. Acta Physica Sinica, 2007, 56(9): 5033-5036. doi: 10.7498/aps.56.5033
    [14] Zhang Chao, Sun Jiu-Xun, Tian Rong-Gang, Zou Shi-Yong. Analytic equations of state and thermo-physical properties for the α, β, and γ-Si3N4. Acta Physica Sinica, 2007, 56(10): 5969-5973. doi: 10.7498/aps.56.5969
    [15] Yang Peng-Fei, Chen Wen-Xue. The distribution and origination of electric field and charge in interface layer of superconductor. Acta Physica Sinica, 2006, 55(12): 6622-6629. doi: 10.7498/aps.55.6622
    [16] Wang Jiu-Min, Chen Kun-Ji, Song Jie, Yu Lin-Wei, Wu Liang-Cai, Li Wei, Huang Xin-Fan. Double-level charge storage in self-aligned doubly-stacked Si nanocrystals in SiNx dielectric. Acta Physica Sinica, 2006, 55(11): 6080-6084. doi: 10.7498/aps.55.6080
    [17] Zhang Duan-Ming, Li Li, Li Zhi-Hua, Guan Li, Hou Si-Pu, Tan Xin-Yu. Variation of the target absorptance and target temperature distribution before melting in the pulsed laser ablation process. Acta Physica Sinica, 2005, 54(3): 1283-1289. doi: 10.7498/aps.54.1283
    [18] DONG ZHENG-CHAO, XING DING-YU, DONG JIN-MING. SHOT NOISE IN FERROMAGNET-SUPERCONDUCTOR TUNNELING JUNCTION. Acta Physica Sinica, 2001, 50(3): 556-560. doi: 10.7498/aps.50.556
    [19] WANG LEI, TANG JING-CHANG, WANG XUE-SEN. SCANNING TUNNELING MICROSCOPY STUDY OF Si GROWTH ON Si3N4/Si SURFACE. Acta Physica Sinica, 2001, 50(3): 517-522. doi: 10.7498/aps.50.517
    [20] LIN XIU-CHUAN, SHAO TIAN-MIN. LUMPED METHOD FOR THE MEASUREMENT OF LASER ABSORPTANCE OF MATERIALS . Acta Physica Sinica, 2001, 50(5): 856-859. doi: 10.7498/aps.50.856
Metrics
  • Abstract views:  6835
  • PDF Downloads:  93
  • Cited By: 0
Publishing process
  • Received Date:  03 September 2018
  • Accepted Date:  12 October 2018
  • Published Online:  20 December 2019

/

返回文章
返回