Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study of pedestrian flow on stairs with a cellular transmission model

Jin Hui Guo Ren-Yong

Citation:

Study of pedestrian flow on stairs with a cellular transmission model

Jin Hui, Guo Ren-Yong
PDF
HTML
Get Citation
  • The aim of this study is to address the following issues: 1) revealing the typical behaviors and properties of pedestrian movement when going upstairs and downstairs; 2) constructing a pedestrian evacuation model to formulate the walking process of pedestrians in stair area; 3) verifying that the cell transmission model widely used in the two-dimensional walking space can also be applied to the three-dimensional staircase area. Firstly, an observation experiment is carried out to gain the pedestrian movement data in the process of going upstairs and downstairs. By collating the data, the relation between density and flow in the unidirectional process of going upstairs or going downstairs, and in the bi-directional process of going upstairs and downstairs, are drawn respectively. Then, by analyzing the fundamental diagrams, several characteristics of pedestrian movement in stair area are revealed. Based on these characteristics, an extended cell transmission model is proposed. In this model, a potential correction coefficient is introduced to change the route choice of pedestrians by using the influence of different directional pedestrians on the potential; a flow modification coefficient is introduced to describe the effect of physical parameters on the maximum flow at the boundary between two neighboring cells; and an offset coefficient is introduced to correct movement rules and strengthen the influence of preferential direction on pedestrian route choice. Further, simulations relied on the proposed model are conducted. By comparing the simulation results with the experimental data, the model is calibrated. Then the calibrated model is employed to formulate the pedestrian movement in stair area, and the sensitivity of the potential correction parameter is also discussed. The simulation results indicate that the proposed model can successfully reproduce the movement of pedestrians on stair. Moreover, the route-choice behaviors of pedestrians can be directed by varying the values of the potential correction coefficient, which can present important information about optimizing the evacuation process of pedestrians on stair, thereby reducing the risk of an accident, such as congesting and treading.
      Corresponding author: Guo Ren-Yong, buaa_guorenyong@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 71622005).
    [1]

    Galea E R, Sharp G, Lawrence P J 2008 J. Fire Prot. Eng. 18 291Google Scholar

    [2]

    Yeo S K, He Y P 2009 Fire Saf. J. 44 183Google Scholar

    [3]

    Yang L Z, Rao P, Zhu K J, Liu S B, Zhan X 2012 Saf. Sci. 50 1173Google Scholar

    [4]

    Hoskins B L, Milke J A 2012 Fire Saf. J. 48 49Google Scholar

    [5]

    岳昊, 张旭, 陈刚, 邵春福 2012 物理学报 61 130509Google Scholar

    Yue H, Zhang X, Chen G, Shao C F 2012 Acta Phys. Sin. 61 130509Google Scholar

    [6]

    Shields T J, Boyce K E 2009 Fire Saf. J. 44 881Google Scholar

    [7]

    岳昊, 邵春福, 关宏志, 段龙梅 2010 物理学报 59 4499Google Scholar

    Yue H, Shao C F, Guan H Z, Duan L M 2010 Acta Phys. Sin. 59 4499Google Scholar

    [8]

    陈亮, 郭仁拥, 塔娜 2013 物理学报 62 050506

    Chen L, Guo R Y, Ta N 2013 Acta Phys. Sin. 62 050506

    [9]

    永贵, 黄海军, 许岩 2013 物理学报 62 010506

    Yong G, Huang H J, Xu Y 2013 Acta Phys. Sin. 62 010506 (in Chinese)

    [10]

    Sano T, Ronchi E, Minegishi Y, Nilsson D 2017 Fire Saf. J. 89 77Google Scholar

    [11]

    任刚, 陆丽丽, 王炜 2012 物理学报 61 144501Google Scholar

    Ren G, Lu L L, Wang W 2012 Acta Phys. Sin. 61 144501Google Scholar

    [12]

    Hughes R L 2002 Trans. Res. B 32 507

    [13]

    董立耘, 陈立, 段晓茵 2015 物理学报 64 220505Google Scholar

    Dong L Y, Chen L, Duan X Y 2015 Acta Phys. Sin. 64 220505Google Scholar

    [14]

    Huang H J, Guo R Y 2008 Phys. Rev. E 78 021131Google Scholar

    [15]

    Helbing D, Molnar P 1995 Phys. Rev. E 51 4282Google Scholar

    [16]

    Helbing D, Farkas I, Vicsek T 2000 Nature 407 487Google Scholar

    [17]

    杨凌霄, 赵小梅, 高自友, 郑建风 2011 物理学报 60 100501Google Scholar

    Yang L X, Zhao X M, Gao Z Y, Zheng J F 2011 Acta Phys. Sin. 60 100501Google Scholar

    [18]

    Qu Y C, Gao Z Y, Xiao Y, Li X G 2014 Saf. Sci. 70 189Google Scholar

    [19]

    Burstedde C, Klauck K, Schadschneider A, Zittart J 2001 Physica A 295 507Google Scholar

    [20]

    Guo R Y, Guo X 2012 Chin. Phys. B 21 018901Google Scholar

    [21]

    Guo R Y, Huang H J, Wong S C 2011 Trans. Res. B 45 490Google Scholar

    [22]

    霍非舟 2015 博士学位论文 (合肥:中国科学技术大学)

    Huo F Z 2015 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [23]

    Fujiyama T, Tyler N 2010 Transport. Plan. Techn. 33 177202Google Scholar

    [24]

    Xu X, Song W G 2009 Build. Environ. 44 1039Google Scholar

    [25]

    Ma J, Song W G, Tian W, Lo S M, Liao G X 2012 Saf. Sci. 50 1665Google Scholar

    [26]

    张培红, 鲁韬, 陈宝智, 卢兆明 2005 人类工效学 11 8Google Scholar

    Zhang P H, Lu T, Chen B Z, Lu Z M 2005 Chin. J. Ergon. 11 8Google Scholar

    [27]

    Kretz T, Grunebohm A, Kessel A, Klupfel H, Meyer Konig H, Schreckenberg M 2008 Saf. Sci. 46 72Google Scholar

    [28]

    Peacock R D, Hoskins B L, Kuligowski E D 2012 Saf. Sci. 50 1655Google Scholar

  • 图 1  实验楼梯区域

    Figure 1.  The experimental staircase area.

    图 2  单层楼梯三视图

    Figure 2.  Single-story staircase three views.

    图 3  (a) 上楼过程中楼梯区域平均流量-密度散点图及关系曲线; (b) 下楼过程中楼梯区域平均流量-密度散点图及关系曲线; (c) 上下楼过程中楼梯区域平均流量-密度散点图及关系曲线

    Figure 3.  (a) The relation of the density against the average flow when going upstairs; (b) the relation of the density against the average flow when going downstairs; (c) the relation of the density against the average flow when going upstairs and downstairs.

    图 4  二维斜坡平面行走空间

    Figure 4.  Walking space on the two-dimensional slope section.

    图 5  空间划分: 正六边形元胞

    Figure 5.  Discretization of space: a regular hexagonal cell.

    图 6  上楼过程第10, 30, 60, 90及110时间步模拟结果伪彩图 (颜色深浅表示每个元胞内行人数量与元胞容量之比)

    Figure 6.  Pseudo-color plots delineating the ratio of the number of pedestrians in each cell to the capacity of the cell at time steps 10, 30, 60, 90 and 110 in the process of going upstairs.

    图 7  下楼过程第10, 30, 60, 90及110时间步模拟结果伪彩图 (颜色深浅表示每个元胞内行人数量与元胞容量之比)

    Figure 7.  Pseudo-color plots delineating the ratio of the number of pedestrians in each cell to the capacity of the cell at time steps 10, 30, 60, 90 and 110 in the process of going downstairs.

    图 8  观测 (方形)与实验(圆形)流量-密度关系对比图 (a) 上楼过程, (b) 下楼过程

    Figure 8.  Comparison of the fundamental density-flow diagram from the observation data (square marks) and the experiment (circle marks) (a) in the process of going upstairs, and (b) in the process of going downstairs.

    图 9  双向运动过程的流量-密度关系对比图

    Figure 9.  Comparison of the fundamental density-flow diagram from the observation (square marks) and the experiment (circle marks) in the process of bi-directional movment .

    图 10  (a) 稳定状态之前楼梯区域双向运动的流量-密度关系图; (b) 稳定状态之后楼梯区域双向运动的流量-密度关系图

    Figure 10.  (a) Fundamental density-flow diagram of the bi-directional pedestrian flow on the stairs before the stabilization process; (b) fundamental density-flow diagram of the bi-directional pedestrian flow on the stairs after the stabilization process.

    图 11  楼梯区域双向运动的流量-密度关系散点图 (a) δ = 1.0, θ = 0.8; (b) δ = 0.6, θ = 0.8; (c) δ = 0.3, θ = 0.8; (d) δ = 1.4, θ = 0.8

    Figure 11.  Fundamental density-flow diagram of the bi-directional pedestrian flow on the stairs when (a) δ = 1.0 and θ = 0.8; (b) δ = 0.6 and θ = 0.8; (c) δ = 0.3 and θ = 0.8; (d) δ = 1.4 and θ = 0.8.

    图 12  楼梯区域双向运动中上行行人(左)、下行行人(中)及双向行人(右)模拟结果伪彩图(颜色深浅表示每个元胞内行人数量与元胞容量之比) (a) δ = 1.0, θ = 0.8; (b) δ = 0.6, θ = 0.8; (c) δ = 0.3, θ = 0.8; (d) δ = 1.4, θ = 0.8

    Figure 12.  Pseudo-color plots delineating the ratio of the number of pedestrians in each cell to the capacity of the cell during the walking process of bi-directional pedestrian flows on the stairs (upward flow in the left, downward flow in the middle, and bi-directional flows in the right) when δ = 1.0 and θ = 0.8 in (a), δ = 0.6 and θ = 0.8 in (b), δ = 0.3 and θ = 0.8 in (c), δ = 1.4 and θ = 0.8 in (d).

    表 1  实验楼梯的基本参数

    Table 1.  The basic parameters of the staircases.

    有效宽度/m有效长度/m台阶数/级台阶高度/m台阶宽度/m楼梯坡度 tanθ有效面积/m2
    3.168.95380.150.370.4028.28
    DownLoad: CSV

    表 2  楼梯区域上的部分观测数据

    Table 2.  Some observation data on staircase area.

    数据
    编号
    行人数量
    N/人
    流入量
    IF/人·$\Delta t$−1
    流出量
    OF/人·$\Delta t$−1
    TT+10 sUDUD
    111130806
    22526012011
    32924012017
    43231021022
    53328019014
    61820120100
    73936140170
    82933210170
    95454120120
    10141280100
    1118193323
    1226286958
    1350469131016
    14484488812
    1538358111012
     注: U, 上行; D, 下行.
    DownLoad: CSV

    表 3  稳定过程中的部分流量数据

    Table 3.  Some flow data in the stabilization process.

    时间步606162636465666768
    上楼流量/人·s−16.06.06.06.06.06.06.06.06.0
    下楼流量/人·s−16.06.06.06.06.06.06.06.06.0
    时间步808182838485868788
    上楼流量/人·s−16.06.06.06.06.06.06.06.06.0
    下楼流量/人·s−16.06.06.06.06.06.06.06.06.0
    DownLoad: CSV

    表 4  稳定过程结束后的部分流量数据

    Table 4.  Some flow data after the stabilization process.

    时间步106107108109110111112113114
    上楼流量/人·s−16.05.95.75.24.63.93.12.41.8
    下楼流量/人·s−15.95.54.73.72.71.81.10.70.4
    DownLoad: CSV

    表 5  稳定过程结束后的部分行人数据

    Table 5.  Some pedestrian data after the stabilization process.

    时间步106107108109110111112113114
    上楼人数/人96.690.684.678.672.666.660.654.648.6
    下楼人数/人76.770.164.858.852.846.840.834.929.0
    DownLoad: CSV
  • [1]

    Galea E R, Sharp G, Lawrence P J 2008 J. Fire Prot. Eng. 18 291Google Scholar

    [2]

    Yeo S K, He Y P 2009 Fire Saf. J. 44 183Google Scholar

    [3]

    Yang L Z, Rao P, Zhu K J, Liu S B, Zhan X 2012 Saf. Sci. 50 1173Google Scholar

    [4]

    Hoskins B L, Milke J A 2012 Fire Saf. J. 48 49Google Scholar

    [5]

    岳昊, 张旭, 陈刚, 邵春福 2012 物理学报 61 130509Google Scholar

    Yue H, Zhang X, Chen G, Shao C F 2012 Acta Phys. Sin. 61 130509Google Scholar

    [6]

    Shields T J, Boyce K E 2009 Fire Saf. J. 44 881Google Scholar

    [7]

    岳昊, 邵春福, 关宏志, 段龙梅 2010 物理学报 59 4499Google Scholar

    Yue H, Shao C F, Guan H Z, Duan L M 2010 Acta Phys. Sin. 59 4499Google Scholar

    [8]

    陈亮, 郭仁拥, 塔娜 2013 物理学报 62 050506

    Chen L, Guo R Y, Ta N 2013 Acta Phys. Sin. 62 050506

    [9]

    永贵, 黄海军, 许岩 2013 物理学报 62 010506

    Yong G, Huang H J, Xu Y 2013 Acta Phys. Sin. 62 010506 (in Chinese)

    [10]

    Sano T, Ronchi E, Minegishi Y, Nilsson D 2017 Fire Saf. J. 89 77Google Scholar

    [11]

    任刚, 陆丽丽, 王炜 2012 物理学报 61 144501Google Scholar

    Ren G, Lu L L, Wang W 2012 Acta Phys. Sin. 61 144501Google Scholar

    [12]

    Hughes R L 2002 Trans. Res. B 32 507

    [13]

    董立耘, 陈立, 段晓茵 2015 物理学报 64 220505Google Scholar

    Dong L Y, Chen L, Duan X Y 2015 Acta Phys. Sin. 64 220505Google Scholar

    [14]

    Huang H J, Guo R Y 2008 Phys. Rev. E 78 021131Google Scholar

    [15]

    Helbing D, Molnar P 1995 Phys. Rev. E 51 4282Google Scholar

    [16]

    Helbing D, Farkas I, Vicsek T 2000 Nature 407 487Google Scholar

    [17]

    杨凌霄, 赵小梅, 高自友, 郑建风 2011 物理学报 60 100501Google Scholar

    Yang L X, Zhao X M, Gao Z Y, Zheng J F 2011 Acta Phys. Sin. 60 100501Google Scholar

    [18]

    Qu Y C, Gao Z Y, Xiao Y, Li X G 2014 Saf. Sci. 70 189Google Scholar

    [19]

    Burstedde C, Klauck K, Schadschneider A, Zittart J 2001 Physica A 295 507Google Scholar

    [20]

    Guo R Y, Guo X 2012 Chin. Phys. B 21 018901Google Scholar

    [21]

    Guo R Y, Huang H J, Wong S C 2011 Trans. Res. B 45 490Google Scholar

    [22]

    霍非舟 2015 博士学位论文 (合肥:中国科学技术大学)

    Huo F Z 2015 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [23]

    Fujiyama T, Tyler N 2010 Transport. Plan. Techn. 33 177202Google Scholar

    [24]

    Xu X, Song W G 2009 Build. Environ. 44 1039Google Scholar

    [25]

    Ma J, Song W G, Tian W, Lo S M, Liao G X 2012 Saf. Sci. 50 1665Google Scholar

    [26]

    张培红, 鲁韬, 陈宝智, 卢兆明 2005 人类工效学 11 8Google Scholar

    Zhang P H, Lu T, Chen B Z, Lu Z M 2005 Chin. J. Ergon. 11 8Google Scholar

    [27]

    Kretz T, Grunebohm A, Kessel A, Klupfel H, Meyer Konig H, Schreckenberg M 2008 Saf. Sci. 46 72Google Scholar

    [28]

    Peacock R D, Hoskins B L, Kuligowski E D 2012 Saf. Sci. 50 1655Google Scholar

  • [1] Li Ming-Hua, Yuan Zhen-Zhou, Xu Yan, Tian Jun-Fang. Randomness analysis of lane formation in pedestrian counter flow based on improved lattice gas model. Acta Physica Sinica, 2015, 64(1): 018903. doi: 10.7498/aps.64.018903
    [2] Hu Jun, You Lei. A cellular automata model of pedestrian evacuation in three-dimensional space. Acta Physica Sinica, 2014, 63(8): 080507. doi: 10.7498/aps.63.080507
    [3] Wang Jun-Ping, Qi Su-Yang, Liu Shi-Gang. Net sensitivity for open and short model based on layout optimization. Acta Physica Sinica, 2014, 63(12): 128503. doi: 10.7498/aps.63.128503
    [4] Tian Hui-Juan, Niu Ping-Juan. Sensitivity of delta-P1 approximation model to the reduced scattering parameter. Acta Physica Sinica, 2013, 62(3): 034201. doi: 10.7498/aps.62.034201
    [5] Yong Gui, Huang Hai-Jun, Xu Yan. A cellular automata model of pedestrian evacuation in rooms with squared rhombus cells. Acta Physica Sinica, 2013, 62(1): 010506. doi: 10.7498/aps.62.010506
    [6] Wang Rui, Wang Yu-Shan. Sensitivity of Delta-P1 approximation model to second-order parameter. Acta Physica Sinica, 2012, 61(18): 184202. doi: 10.7498/aps.61.184202
    [7] Chen Ran, Li Xiang, Dong Li-Yun. Modeling and simulation of weaving pedestrian flow in subway stations. Acta Physica Sinica, 2012, 61(14): 144502. doi: 10.7498/aps.61.144502
    [8] Ren Gang, Lu Li-Li, Wang Wei. Modeling bi-direction pedestrian flow by cellular automata and complex network theories. Acta Physica Sinica, 2012, 61(14): 144501. doi: 10.7498/aps.61.144501
    [9] Gong Yuan, Guo Yu, Rao Yun-Jiang, Zhao Tian, Wu Yu, Ran Zeng-Ling. Sensitivity analysis of hybrid fiber Fabry-Pérot refractive-index sensor. Acta Physica Sinica, 2011, 60(6): 064202. doi: 10.7498/aps.60.064202
    [10] Yang Ling-Xiao, Zhao Xiao-Mei, Gao Zi-You, Zheng Jian-Feng. Bi-directional pedestrian flow model with traffic convention. Acta Physica Sinica, 2011, 60(10): 100501. doi: 10.7498/aps.60.100501
    [11] Hu Xiao-Qin, Xie Guo-Feng. Optimization of shell model potential parameters of BaTiO3 by genetic algorithm. Acta Physica Sinica, 2011, 60(1): 013401. doi: 10.7498/aps.60.013401
    [12] Hou Jian-Ping, Ning Tao, Gai Shuang-Long, Li Peng, Hao Jian-Ping, Zhao Jian-Lin. Sensitivity analysis of refractive index measurement based on intermodal interference in photonic crystal fiber. Acta Physica Sinica, 2010, 59(7): 4732-4737. doi: 10.7498/aps.59.4732
    [13] Xiao Song-Qing, Xie Guo-Feng. Sensitivity analysis and optimization of interatomic potential parameters for perovskites. Acta Physica Sinica, 2010, 59(7): 4808-4811. doi: 10.7498/aps.59.4808
    [14] Mei Chao-Qun, Huang Hai-Jun, Tang Tie-Qiao. Modeling urban expressway systems with ramps and accessory roads by cellular automaton model. Acta Physica Sinica, 2009, 58(5): 3014-3021. doi: 10.7498/aps.58.3014
    [15] Zhou Jin-Wang, Chen Xiu-Li, Kong Ling-Jiang, Liu Mu-Ren, Tan Hui-Li, Zhou Jian-Huai. An improved cellular automaton model simulation of pedestrian counter flow with variety velocities. Acta Physica Sinica, 2009, 58(4): 2281-2285. doi: 10.7498/aps.58.2281
    [16] Liu Ying, Wang Li-Jun, Guo Yun-Feng, Zhang Xiao-Juan, Gao Zong-Hui, Tian Hui-Juan. Sensitivity of spatially-resolved diffuse reflectance to high-order optical parameters. Acta Physica Sinica, 2007, 56(4): 2119-2123. doi: 10.7498/aps.56.2119
    [17] Zhang Fa-Qiang, Yang Jian-Lun, Li Zheng-Hong, Zhong Yao-Hua, Ye Fan, Qin Yi, Chen Fa-Xin, Ying Chun-Tong, Liu Guang-Jun. High-sensitivity fast neutron radiography system. Acta Physica Sinica, 2007, 56(1): 583-588. doi: 10.7498/aps.56.583
    [18] Shang Hua-Yan, Huang Hai-Jun, Gao Zi-You. Locating the variable message signs by cell transmission model. Acta Physica Sinica, 2007, 56(8): 4342-4347. doi: 10.7498/aps.56.4342
    [19] Lü XIAO-YANG, KONG LING-JIANG, LIU MU-REN. ANALYSIS ON MACROSCOPIC EQUATION TO ONE-DIMENSIONAL RANDOM TRAFFIC FLOW MODELS. Acta Physica Sinica, 2001, 50(7): 1255-1259. doi: 10.7498/aps.50.1255
    [20] PAN SHAO-HUA. ANALYSIS OF THE MECHANISM AND SENSITIVITY OF INTRACAVITY SPECTROSCOPY. Acta Physica Sinica, 1981, 30(9): 1270-1274. doi: 10.7498/aps.30.1270
Metrics
  • Abstract views:  7606
  • PDF Downloads:  81
  • Cited By: 0
Publishing process
  • Received Date:  07 May 2018
  • Accepted Date:  14 November 2018
  • Available Online:  01 January 2019
  • Published Online:  20 January 2019

/

返回文章
返回