Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of Nd-doping on multiferroic properties of Bi6−xNdxFe1.4Ni0.6Ti3O18 polycrystalline

Chen Cheng Lu Jian-An Du Wei Wang Wei Mao Xiang-Yu Chen Xiao-Bing

Citation:

Effects of Nd-doping on multiferroic properties of Bi6−xNdxFe1.4Ni0.6Ti3O18 polycrystalline

Chen Cheng, Lu Jian-An, Du Wei, Wang Wei, Mao Xiang-Yu, Chen Xiao-Bing
PDF
HTML
Get Citation
  • Single phase polycrystalline Nd-modified BNFNT-x series samples are obtained from the precursors of the same chemical formula, and prepared by using the citric acid-nitrate method. The X-ray photoelectron spectroscopy measurement indicates that a slight Nd modification does not exert significant influence on the stability of the octahedral FeO6, nor NiO6 nor TiO6. When the molar concentration of Nd exceeds 0.25, the stability of BiO layer is cemented and conducive to the insulating role of BiO layer. It is seen that a small quantity of Nd substitution for bismuth can improve the ferroelectric polarization (2Pr) of ~ 19.7 $ \mu {\rm C/cm }^2$. The room-temperature magnetization (2Ms) can reach a maximal value of ~ 4.132 emu/g (1 emu/g = 10−3 A·m2/g)in the BNFNT-0.20 sample. Two anomalies are observed in the temperature-dependent dielectric loss spectrum: one is situated in the temperature range from 200 K to 400 K and the other is located in the vicinity of 900 K. It is considered that the loss anomaly found near 900 K might be associated with the viscous motion of ferroelectric domain walls. In addition, the loss peak shown in a temperature range from 200 K to 400 K shifts toward the higher temperature with measuring frequency increasing, indicating the characteristics of dielectric relaxor behavior. The activation energy is evaluated to be 0.287−0.366 eV, which suggests that the relaxor is associated with the electrons transfer and hop between Fe3+ and Fe2+. The room-temperature magnetization (2Ms) has reached a maximal value of ~ 4.132 emu/g in the BNFNT-0.20 sample. The lattice distortion due to the introduction of Nd changes the angle of such antiferromagnetic coupling bonds as Fe3+—O—Fe3+, Fe3+—O—Ni3+ and Ni3+—O—Ni3+, which leads the AFM spin states to break, and thus increases the magnetic properties. While with further modification of Nd, the drastic lattice distortion reduces the occupation of the B-sites of the magnetic ions, which might be responsible for further deteriorating the magnetic properties.
      Corresponding author: Mao Xiang-Yu, xymao@yzu.edu.cn ; Chen Xiao-Bing, xbchen@yzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51402256, 11374227).
    [1]

    Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Vieland D, Vaithyanathan V, Schlom D G, Waghmare U V, Spaldin N A, Rabe K M, Wuttig M, Ramesh R 2003 Science 299 1719Google Scholar

    [2]

    Kimura T, Kawamoto S, Yamada Y, Azuma M, Takano M, Tokura Y Y 2003 Phys. Rev. B 67 180401Google Scholar

    [3]

    Azuma M, Takata K, Saito T, Ishiwata S, Shimakawa Y, Takano M 2005 J. Am. Chem. Soc. 127 8889Google Scholar

    [4]

    Singh R S, Bhimasankaram T, Kumar G S, Suryanarayana S V 1994 Solid State Commun. 91 567Google Scholar

    [5]

    Kojima T, Sakai T, Watanabe T, Funakubo H, Saito K, Osada M 2002 Appl. Phys. Lett. 80 2746Google Scholar

    [6]

    Noguchi Y, Miyayama M 2001 Appl. Phys. Lett. 78 1903Google Scholar

    [7]

    Noguchi Y J, Goshima Y, Miyayama M, Miwa I 2000 Jpn. J. Appl. Phys. 39 L1259Google Scholar

    [8]

    Watanabe T, Funakubo H, Osada M, Noguchi Y, Miyayama M 2002 Appl. Phys. Lett. 80 100Google Scholar

    [9]

    Yao Y Y, Song C H, Bao P, Su D, Lu X M, Zhu J S, Wang Y N 2004 J. Appl. Phys. 95 3126Google Scholar

    [10]

    Kuble F, Schmid H 1992 Ferroelectrics 129 101Google Scholar

    [11]

    Mao X Y, Wang W, Chen X B, Lu Y L 2009 Appl. Phys. Lett. 95 082901Google Scholar

    [12]

    Liu Z, Yang J, Tang X W, Yin L H, Zhu X B, Dai J M, Sun Y P 2012 Appl. Phys. Lett. 101 122402Google Scholar

    [13]

    毛翔宇, 邹保文, 孙慧, 陈春燕, 陈小兵 2015 物理学报 64 217701Google Scholar

    Mao X Y, Zou B W, Sun H, Chen C Y, Chen X B 2015 Acta Phys. Sin. 64 217701Google Scholar

    [14]

    Li X N, Zhu Z, Li F, Peng R R, Zhai X F, Fu Z P, Lu Y L 2015 J. Eur. Ceram. Soc. 35 3437Google Scholar

    [15]

    Xiong P, Yang J, Qin Y F, Huang W J, Tang X W, Yin L H, Song W H, Dai J M, Zhu X B, Sun Y P 2017 Ceram. Int. 43 4405Google Scholar

    [16]

    Fouskove A, Cross L E 1970 J. Appl. Phys. 41 2834Google Scholar

    [17]

    Lu W P, Mao X Y, Chen X B 2004 J. Appl. Phys. 95 1973Google Scholar

    [18]

    Wang J L, Li L, Peng R R, Fu Z P, Liu M, Lu Y L 2015 J. Am. Ceram. Soc. 98 1528Google Scholar

    [19]

    Bai W, Chen C, Yang J, Zhang Y Y, Qi R J, Huang R, Tang X D, Duan C G, Chu J H 2015 Sci. Rep. 5 17846Google Scholar

    [20]

    Yu Z H, Yu B Y, Liu Y, Zhou P, Jing J, Lu Y X, Sun H, Chen X B, Ma Z J, Zhang T J, Huang C W, Qi Y J 2017 Ceram. Int. 43 14996Google Scholar

    [21]

    Liu S, Yan S Q, Luo H, Yao L L, Hu Z W, Huang S X, Deng L W 2018 J. Mater. Sci. 53 1014Google Scholar

    [22]

    Yang J, Yin L H, Liu Z, Zhu X B, Song W H, Dai J M, Yang Z R, Sun Y P 2012 Appl. Phys. Lett. 101 012402Google Scholar

    [23]

    Srinivas A, Kumar M M, Suryanarayana S V, Bhimasankaram T 1999 Mater. Res. Bull. 34 989Google Scholar

    [24]

    Kim S K, Miyayama M, Yanagida H 1996 Mater. Res. Bull. 31 121Google Scholar

    [25]

    Li X N, Ju Z, Li F, Huang Y, Xie Y M, Fu Z P, Knize R J, Lu Y L 2014 J. Mater. Chem. 2 13366Google Scholar

    [26]

    Mao X Y, Mao F W, Chen X B 2006 Integr. Ferroelectr. 79 155Google Scholar

    [27]

    Yuan B, Yang J, Chen J, Zuo X Z, Yin L H, Tang X W, Zhu X B, Dai J M, Song W H, Sun Y P 2014 Appl. Phys. Lett. 104 062413Google Scholar

    [28]

    Wang C H, Liu Z F, Yu L, Tian Z M, Yuan S L 2011 Mater. Sci. Eng. B 176 1243Google Scholar

    [29]

    Zuo X Z, Yang J, Song D P, Yuan B, Tang X W, Zhang K J, Zhu X B, Song W H, Dai J M, Sun Y P 2014 J. Appl. Phys. 116 759Google Scholar

    [30]

    Shannon R D 1976 Acta Crystallogr. Sect. A 32 751Google Scholar

    [31]

    Hussain S, Hasanain S K, Jaffari G H, Faridi S, Rehman F, Abbas T A, Shah S I 2013 J. Am. Ceram. Soc. 96 3141Google Scholar

    [32]

    Kojima S, Imaizumi R, Hamazaki S, Takashige M 1994 Jpn J. Appl. Phys. Part 1 33 5559Google Scholar

    [33]

    Zhang S T, Chen Y F, Liu Z G, Ming N B 2005 J. Appl. Phys. 97 104106Google Scholar

    [34]

    Mao X Y, Sun H, Wang W, Lu Y L, Chen X B 2012 Solid State Commun. 152 483Google Scholar

    [35]

    Mao X Y, Wang W, Sun H, Lu Y L, Chen X B 2012 Integr. Ferroelectr. 132 16Google Scholar

    [36]

    Wu Y Y, Zhang D M, Yu J, Wang Y B 2009 Mater. Chem. Phys. 113 422Google Scholar

    [37]

    Shulman H S, Damjanovic D, Setter N 2000 J. Am. Ceram. Soc. 83 528Google Scholar

    [38]

    Bai W, Chen G, Zhu J Y, Yang J, Lin T, Meng X J, Tang X D, Duan C G, Chu J H 2012 Appl. Phys. Lett. 100 082902Google Scholar

    [39]

    Ikeda N, Ohsumi H, Ohwada K, Ishii K, Inami T, Kakurai K, Murakami Y, Yoshii K, Mori S, Horibe Y, Kito H 2005 Nature 436 1136Google Scholar

    [40]

    Liu Y Y, Chen X M, Liu X Q, Li L 2007 Appl. Phys. Lett. 90 192905Google Scholar

    [41]

    Maglione M, Subramanian M A 2008 Appl. Phys. Lett. 93 032902Google Scholar

    [42]

    Patwe S J, Achary S N, Manjanna J, Tyagi A K, Deshpande S K, Mishra S K, Krishna P S R, Shinde A B 2013 Appl. Phys. Lett. 103 122901Google Scholar

    [43]

    Khomchenko V A, Shvartsman V V, Borisov P, Kleemann W, Kiselev D A, Bdikin I K, Vieira J M, Kholkin A L 2009 Acta Materialia 57 5137Google Scholar

    [44]

    Suryanarayana S V, Srinivas A, Singh R S 1999 Proc. SPIE 3903 232Google Scholar

    [45]

    雷志威 2015 博士学位论文(合肥: 中国科学技术大学)

    Lei Z W 2015 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

  • 图 2  BNFNT-x (x = 0.00, 0.10, 0.20, 0.25和0.30)样品断面的SEM图像

    Figure 2.  SEM micrographs of fresh fracture surfaces of BNFNT-x (x = 0.00, 0.10, 0.20, 0.25 and 0.30) samples.

    图 1  室温下BNFNT-x (x = 0.00, 0.10, 0.20, 0.25和0.30)的XRD图谱

    Figure 1.  XRD patterns of BNFNT-x (x = 0.00, 0.10, 0.20, 0.25 and 0.30) at room temperature.

    图 3  (a) 室温下BNFNT-x样品的拉曼谱; (b) Nd含量对BNFNT-x样品中与BiO层相关的拉曼峰的影响

    Figure 3.  (a) Raman spectra of BNFNT-x at room temperature; (b) effect of Nd content on Raman peaks associated with BiO layers in BNFNT-x samples.

    图 5  (a) BNFNT-x 样品2Pr-E曲线; (b)电场约为140 kV/cm下Nd含量对2Pr的影响; (c)电场约为190 kV/cm下Nd含量对2Pr的影响

    Figure 5.  (a) The 2Pr-E curves of BNFNT-x samples; (b) dependence of 2Pr of BNFNT-x ceramics on Nd content x under the electric filed about 140 kV/cm; (c) dependence of 2Pr of BNFNT-x ceramics on Nd content x under the electric filed about 190 kV/cm.

    图 4  室温下BNFNT-x陶瓷样品的电滞回线

    Figure 4.  Ferroelectric hysteresis loop of BNFNT-x ceramic samples at room temperature.

    图 7  (a)—(e)测量频率为1—492.2 kHz时BNFNT-x样品的介电损耗峰 (插图为BNFNT-x样品相应的激活能)(a) Bi6Fe1.4Ni0.6Ti3O18; (b) Bi5.9Nd0.1Fe1.4Ni0.6Ti3O18; (c) Bi5.8Nd0.2Fe1.4Ni0.6Ti3O18; (d) Bi5.75Nd0.25Fe1.4Ni0.6Ti3O18; (e) Bi5.7Nd0.3Fe1.4Ni0.6Ti3O18; (f) BNFNT-x样品Nd含量对激活能的影响

    Figure 7.  (a)−(e) Dielectric loss peak with the measurement frequencies from 1 kHz to 492.2 kHz (inset is the corresponding activation energy of BNFNT-x sample): (a) Bi6Fe1.4Ni0.6Ti3O18; (b) Bi5.9Nd0.1Fe1.4Ni0.6Ti3O18; (c) Bi5.8Nd0.2Fe1.4Ni0.6Ti3O18;(d) Bi5.75Nd0.25Fe1.4Ni0.6Ti3O18; (e) Bi5.7Nd0.3Fe1.4Ni0.6Ti3O18; (f) dependence of activation energy of BNFNT-x ceramics on Nd content x.

    图 6  27.17 kHz频率下120—1000 K温度范围内所测量的介电损耗峰(插图为BNFNT-x样品200—400 K的放大部分)

    Figure 6.  Dielectric loss peak with the measurement temperature from 120 to 1000 K at the frequency of 27.17 kHz. Inset is the corresponding enlarge part of BNFNT-x sample under the temperature from 200 to 400 K.

    图 8  (a)室温下BNFNT-x样品的磁滞回线 (插图为中部放大图像); (b) BNFNT-x样品2Ms随Nd含量的变化

    Figure 8.  (a) At room temperature, magnetic hysteresis of BNFNT-x samples (inset is the enlarged central part of the M-H curve); (b) dependence of 2Ms of BNFNT-x on the Nd content.

    图 9  BNFNT-x样品的FC和ZFC磁化曲线 (a) x = 0.00; (b) x = 0.10; (c) x = 0.20; (d) x = 0.25; (e) x = 0.30

    Figure 9.  FC and ZFC magnetization curves of the BNFNT-x sample: (a) x = 0.00; (b) x = 0.10; (c) x = 0.20; (d) x = 0.25; (e) x = 0.30.

    图 10  (a) BNFNT-x样品中Bi的电子能谱图; (b) BNFNT-x样品中Fe的电子能谱图

    Figure 10.  (a) Electron spectra of Bi in BNFNT-x samples; (b) electron spectra of Fe in BNFNT-x samples.

  • [1]

    Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Vieland D, Vaithyanathan V, Schlom D G, Waghmare U V, Spaldin N A, Rabe K M, Wuttig M, Ramesh R 2003 Science 299 1719Google Scholar

    [2]

    Kimura T, Kawamoto S, Yamada Y, Azuma M, Takano M, Tokura Y Y 2003 Phys. Rev. B 67 180401Google Scholar

    [3]

    Azuma M, Takata K, Saito T, Ishiwata S, Shimakawa Y, Takano M 2005 J. Am. Chem. Soc. 127 8889Google Scholar

    [4]

    Singh R S, Bhimasankaram T, Kumar G S, Suryanarayana S V 1994 Solid State Commun. 91 567Google Scholar

    [5]

    Kojima T, Sakai T, Watanabe T, Funakubo H, Saito K, Osada M 2002 Appl. Phys. Lett. 80 2746Google Scholar

    [6]

    Noguchi Y, Miyayama M 2001 Appl. Phys. Lett. 78 1903Google Scholar

    [7]

    Noguchi Y J, Goshima Y, Miyayama M, Miwa I 2000 Jpn. J. Appl. Phys. 39 L1259Google Scholar

    [8]

    Watanabe T, Funakubo H, Osada M, Noguchi Y, Miyayama M 2002 Appl. Phys. Lett. 80 100Google Scholar

    [9]

    Yao Y Y, Song C H, Bao P, Su D, Lu X M, Zhu J S, Wang Y N 2004 J. Appl. Phys. 95 3126Google Scholar

    [10]

    Kuble F, Schmid H 1992 Ferroelectrics 129 101Google Scholar

    [11]

    Mao X Y, Wang W, Chen X B, Lu Y L 2009 Appl. Phys. Lett. 95 082901Google Scholar

    [12]

    Liu Z, Yang J, Tang X W, Yin L H, Zhu X B, Dai J M, Sun Y P 2012 Appl. Phys. Lett. 101 122402Google Scholar

    [13]

    毛翔宇, 邹保文, 孙慧, 陈春燕, 陈小兵 2015 物理学报 64 217701Google Scholar

    Mao X Y, Zou B W, Sun H, Chen C Y, Chen X B 2015 Acta Phys. Sin. 64 217701Google Scholar

    [14]

    Li X N, Zhu Z, Li F, Peng R R, Zhai X F, Fu Z P, Lu Y L 2015 J. Eur. Ceram. Soc. 35 3437Google Scholar

    [15]

    Xiong P, Yang J, Qin Y F, Huang W J, Tang X W, Yin L H, Song W H, Dai J M, Zhu X B, Sun Y P 2017 Ceram. Int. 43 4405Google Scholar

    [16]

    Fouskove A, Cross L E 1970 J. Appl. Phys. 41 2834Google Scholar

    [17]

    Lu W P, Mao X Y, Chen X B 2004 J. Appl. Phys. 95 1973Google Scholar

    [18]

    Wang J L, Li L, Peng R R, Fu Z P, Liu M, Lu Y L 2015 J. Am. Ceram. Soc. 98 1528Google Scholar

    [19]

    Bai W, Chen C, Yang J, Zhang Y Y, Qi R J, Huang R, Tang X D, Duan C G, Chu J H 2015 Sci. Rep. 5 17846Google Scholar

    [20]

    Yu Z H, Yu B Y, Liu Y, Zhou P, Jing J, Lu Y X, Sun H, Chen X B, Ma Z J, Zhang T J, Huang C W, Qi Y J 2017 Ceram. Int. 43 14996Google Scholar

    [21]

    Liu S, Yan S Q, Luo H, Yao L L, Hu Z W, Huang S X, Deng L W 2018 J. Mater. Sci. 53 1014Google Scholar

    [22]

    Yang J, Yin L H, Liu Z, Zhu X B, Song W H, Dai J M, Yang Z R, Sun Y P 2012 Appl. Phys. Lett. 101 012402Google Scholar

    [23]

    Srinivas A, Kumar M M, Suryanarayana S V, Bhimasankaram T 1999 Mater. Res. Bull. 34 989Google Scholar

    [24]

    Kim S K, Miyayama M, Yanagida H 1996 Mater. Res. Bull. 31 121Google Scholar

    [25]

    Li X N, Ju Z, Li F, Huang Y, Xie Y M, Fu Z P, Knize R J, Lu Y L 2014 J. Mater. Chem. 2 13366Google Scholar

    [26]

    Mao X Y, Mao F W, Chen X B 2006 Integr. Ferroelectr. 79 155Google Scholar

    [27]

    Yuan B, Yang J, Chen J, Zuo X Z, Yin L H, Tang X W, Zhu X B, Dai J M, Song W H, Sun Y P 2014 Appl. Phys. Lett. 104 062413Google Scholar

    [28]

    Wang C H, Liu Z F, Yu L, Tian Z M, Yuan S L 2011 Mater. Sci. Eng. B 176 1243Google Scholar

    [29]

    Zuo X Z, Yang J, Song D P, Yuan B, Tang X W, Zhang K J, Zhu X B, Song W H, Dai J M, Sun Y P 2014 J. Appl. Phys. 116 759Google Scholar

    [30]

    Shannon R D 1976 Acta Crystallogr. Sect. A 32 751Google Scholar

    [31]

    Hussain S, Hasanain S K, Jaffari G H, Faridi S, Rehman F, Abbas T A, Shah S I 2013 J. Am. Ceram. Soc. 96 3141Google Scholar

    [32]

    Kojima S, Imaizumi R, Hamazaki S, Takashige M 1994 Jpn J. Appl. Phys. Part 1 33 5559Google Scholar

    [33]

    Zhang S T, Chen Y F, Liu Z G, Ming N B 2005 J. Appl. Phys. 97 104106Google Scholar

    [34]

    Mao X Y, Sun H, Wang W, Lu Y L, Chen X B 2012 Solid State Commun. 152 483Google Scholar

    [35]

    Mao X Y, Wang W, Sun H, Lu Y L, Chen X B 2012 Integr. Ferroelectr. 132 16Google Scholar

    [36]

    Wu Y Y, Zhang D M, Yu J, Wang Y B 2009 Mater. Chem. Phys. 113 422Google Scholar

    [37]

    Shulman H S, Damjanovic D, Setter N 2000 J. Am. Ceram. Soc. 83 528Google Scholar

    [38]

    Bai W, Chen G, Zhu J Y, Yang J, Lin T, Meng X J, Tang X D, Duan C G, Chu J H 2012 Appl. Phys. Lett. 100 082902Google Scholar

    [39]

    Ikeda N, Ohsumi H, Ohwada K, Ishii K, Inami T, Kakurai K, Murakami Y, Yoshii K, Mori S, Horibe Y, Kito H 2005 Nature 436 1136Google Scholar

    [40]

    Liu Y Y, Chen X M, Liu X Q, Li L 2007 Appl. Phys. Lett. 90 192905Google Scholar

    [41]

    Maglione M, Subramanian M A 2008 Appl. Phys. Lett. 93 032902Google Scholar

    [42]

    Patwe S J, Achary S N, Manjanna J, Tyagi A K, Deshpande S K, Mishra S K, Krishna P S R, Shinde A B 2013 Appl. Phys. Lett. 103 122901Google Scholar

    [43]

    Khomchenko V A, Shvartsman V V, Borisov P, Kleemann W, Kiselev D A, Bdikin I K, Vieira J M, Kholkin A L 2009 Acta Materialia 57 5137Google Scholar

    [44]

    Suryanarayana S V, Srinivas A, Singh R S 1999 Proc. SPIE 3903 232Google Scholar

    [45]

    雷志威 2015 博士学位论文(合肥: 中国科学技术大学)

    Lei Z W 2015 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

  • [1] Yang Ru-Xia, Lu Yu-Ming, Zeng Li-Zhu, Zhang Lu-Jia, Li Guan-Nan. Effect of Gd doping on the structure, dielectric and multiferroic properties of 0.7BiFe0.95Ga0.05O3-0.3BaTiO3 ceramics. Acta Physica Sinica, 2020, 69(10): 107701. doi: 10.7498/aps.69.20200175
    [2] Huang Yu-Tian, Wang Yu, Zhu Min-Min, Lü Ting, Yang Hong-Chun, Li Xiang, Wang Xiu-Zhang, Liu Mei-Feng, Li Shao-Zhen. (1-x)Sr3Sn2O7+xCa3Mn2O7 ceramics and their photo-electric characteristics. Acta Physica Sinica, 2018, 67(15): 154203. doi: 10.7498/aps.67.20180954
    [3] Zhao Run, Yang Hao. Oxygen vacancies induced tuning effect on physical properties of multiferroic perovskite oxide thin films. Acta Physica Sinica, 2018, 67(15): 156101. doi: 10.7498/aps.67.20181028
    [4] Wu Mei-Xia, Li Man-Rong. Multiferroic properties of exotic double perovskite A2BB' O6. Acta Physica Sinica, 2018, 67(15): 157510. doi: 10.7498/aps.67.20180817
    [5] Zhou Long, Wang Xiao, Zhang Hui-Min, Shen Xu-Dong, Dong Shuai, Long You-Wen. High pressure synthesis and physical properties of multiferroic materials with multiply-ordered perovskite structure. Acta Physica Sinica, 2018, 67(15): 157505. doi: 10.7498/aps.67.20180878
    [6] Liu En-Hua, Chen Zhao, Wen Xiao-Li, Chen Chang-Le. Influence of paramagnetic La2/3Sr1/3MnO3 layer on the multiferroic property of Bi0.8Ba0.2FeO3 film. Acta Physica Sinica, 2016, 65(11): 117701. doi: 10.7498/aps.65.117701
    [7] Zhao Xue-Tong, Liao Rui-Jin, Li Jian-Ying, Wang Fei-Peng. Effect of direct current degradation on dielectric property of CaCu3Ti4O12 ceramic. Acta Physica Sinica, 2015, 64(12): 127701. doi: 10.7498/aps.64.127701
    [8] Mao Xiang-Yu, Zou Bao-Wen, Sun Hui, Chen Chun-Yan, Chen Xiao-Bing. Effects of Co-doping on multiferroic properties of Bi6Fe2-xCoxTi3O18 ceramics. Acta Physica Sinica, 2015, 64(21): 217701. doi: 10.7498/aps.64.217701
    [9] Wang Hui, Lin Jia-Jun, He Jin-Qiang, Liao Yong-Li, Li Sheng-Tao. The effects of precipitant on the defect structures and properties of ZnO varistor ceramics. Acta Physica Sinica, 2013, 62(22): 226103. doi: 10.7498/aps.62.226103
    [10] Li Zhi-Min, Shi Jian-Zhang, Wei Xiao-Hei, Li Pei-Xian, Huang Yun-Xia, Li Gui-Fang, Hao Yue. First principles calculation of electronic structure for Al-doped 3C-SiC and its microwave dielectric properties. Acta Physica Sinica, 2012, 61(23): 237103. doi: 10.7498/aps.61.237103
    [11] Wu Jun-Bo, Tang Xin-Gui, Jia Zhen-Hua, Chen Dong-Ge, Jiang Yan-Ping, Liu Qiu-Xiang. Influences of Y- and La-dopant on the thermal conductive properties and dielectric relaxation of Al2O3-based ceramics. Acta Physica Sinica, 2012, 61(20): 207702. doi: 10.7498/aps.61.207702
    [12] Ding Nan, Tang Xin-Gui, Kuang Shu-Juan, Wu Jun-Bo, Liu Qiu-Xiang, He Qin-Yu. Effect of MnO2 additive on the piezoelectric and dielectric properties of Ba(Zr, Ti)O3 ceramics. Acta Physica Sinica, 2010, 59(9): 6613-6619. doi: 10.7498/aps.59.6613
    [13] Shan Dan, Zhu Jun-Chuan, Jin Can, Chen Xiao-Bing. Effect of B-site equal-valent doping on ferroelectric properties of SrBi4Ti4O15 ceramics. Acta Physica Sinica, 2009, 58(10): 7235-7240. doi: 10.7498/aps.58.7235
    [14] Han Li-An, Chen Chang-Le, Dong Hui-Ying, Wang Jian-Yuan, Gao Guo-Mian, Luo Bing-Cheng. Magnetic and electrical properties of layered perovskite La1.3Sr1.7Mn1-xCuxO7. Acta Physica Sinica, 2008, 57(1): 541-544. doi: 10.7498/aps.57.541
    [15] Zhao Su-Chuan, Li Guo-Rong, Zhang Li-Na, Wang Tian-Bao, Ding Ai-Li. Dielectric properties of Na0.25K0.25Bi0.5TiO3 lead-free ceramics. Acta Physica Sinica, 2006, 55(7): 3711-3715. doi: 10.7498/aps.55.3711
    [16] Zeng Tao, Dong Xian-Lin, Mao Chao-Liang, Liang Rui-Hong, Yang Hong. Effects of porosity and grain sizes on the dielectric and piezoelectric properties of porous PZT ceramics and their mechanism. Acta Physica Sinica, 2006, 55(6): 3073-3079. doi: 10.7498/aps.55.3073
    [17] Zhang Li-Na, Zhao Su-Chuan, Zheng Liao-Ying, Li Guo-Rong, Yin Qing-Rui. Microstructure, dielectric and piezoelectric properties of mixed-layered Bi7Ti4NbO21 ferroelectric ceramics. Acta Physica Sinica, 2005, 54(5): 2346-2351. doi: 10.7498/aps.54.2346
    [18] Hui Rong, Zhu Jun, Lu Wang-Ping, Mao Xiang-Yu, Qiang Feng, Chen Xiao-Bing. Dielectric study on relaxor-like phase transition of lanthanum doped bismuth layer-structured ferroelectrics. Acta Physica Sinica, 2004, 53(1): 276-281. doi: 10.7498/aps.53.276
    [19] Liu Peng, Yao Xi. . Acta Physica Sinica, 2002, 51(7): 1621-1627. doi: 10.7498/aps.51.1621
    [20] Liu Peng, Bian Xiao-Bing, Zhang Liang-Ying, Yao Xi. . Acta Physica Sinica, 2002, 51(7): 1628-1633. doi: 10.7498/aps.51.1628
Metrics
  • Abstract views:  8443
  • PDF Downloads:  47
  • Cited By: 0
Publishing process
  • Received Date:  04 July 2018
  • Accepted Date:  30 November 2018
  • Available Online:  01 February 2019
  • Published Online:  05 February 2019

/

返回文章
返回