Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles study of structure, electronic structure and thermoelectric properties for Co2-based Heusler alloys Co2FeAl1–xSix (x = 0.25, x = 0.5, x = 0.75)

Yang Yan-Min Li Jia Ma Hong-Ran Yang Guang Mao Xiu-Juan Li Cong-Cong

Citation:

First-principles study of structure, electronic structure and thermoelectric properties for Co2-based Heusler alloys Co2FeAl1–xSix (x = 0.25, x = 0.5, x = 0.75)

Yang Yan-Min, Li Jia, Ma Hong-Ran, Yang Guang, Mao Xiu-Juan, Li Cong-Cong
PDF
HTML
Get Citation
  • In the recent decades, the half-metallic materials have become a research hotspot because of their unique electronic structure. The 100% spin polarization at the Fermi level makes them widely used in spintronic devices. The Co-based Heusler alloys belong to an important class of magnetic material, and Co2FeAl and Co2FeSi have been experimentally confirmed to be half-metallic materials with 100% spin polarization at the Fermi level, and the Co2FeSi has a high Curie temperature of 1100 K and a large magnetic moment of 6.0 ${{\text{μ}}{\rm{B}}}$, which is a good candidate for spintronic devices. We here choose and substitute Al atoms in Co2FeAl with Si atoms, and then carry out the theoretical predictions of Co2FeAl1–xSix (x = 0.25, 0.5, 0.75) for both bulk and film . In this paper, using the first principles calculations based on the density functional theory (DFT) we study the electronic structure, tetragonal distortion, elastic constants, phonon spectrum and thermoelectric properties of Co2FeAl1–xSix (x = 0.25, 0.5, 0.75) series alloys. The calculation results show that the electronic structure of Co2FeAl1–xSix (x = 0.25, 0.5, 0.75) series alloys are all half-metallic with 100% spin polarization, and the down spin states (semiconducting character) all exhibit good thermoelectric properties, and the power factor increases with the substitution concentration of Si atoms increasing. The calculated phonon spectrum does not have virtual frequency, indicating its dynamic stability, and all cubic phases fulfill the mechanical stability criteria, i.e. Born criteria: C11 > 0, C44 > 0, C11–C12 > 0, C11 + 2C12 > 0, and C12 < B < C11. With the variation of lattice constant ratio c/a, the lowest energy point of the structure for Co2FeAl1–xSix (x = 0.25, 0.5, 0.75) series alloys are all at c/a = 1, showing that the stability of the structure does not change with the variation of distortion c/a, and further the martensitic transformation cannot occur. For the Co2FeAl1–xSix (x = 0.25, 0.5, 0.75) series alloy thin films, the calculated electronic structures all show a high spin polarization, and it reaches 100% at x = 0.75, and for x = 0.75, the lowest energy point of the structure is at c/a = 1.2, suggesting the martensitic transformation in this structure. With the variation of the tetragonal distortion, the total magnetic moment also changes and it is mainly determined by the changes of atomic magnetic moment of transition-metals Fe and Co.
      Corresponding author: Li Jia, jiali@hebut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation (Grant No. 61671199), the China Postdoctoral Foundation (Grant No. 61671199), Hebei Provincial Postdoctoral Special Foundation (Grant No. 2016M601243), and the National Chunhui Plan (Grant No. Z2017024).
    [1]

    Heusler F 1903 Deut. Phys. Ges. 5 219

    [2]

    Murray S J, Marioni M, Allen S M, O’Handley R C 2000 Appl. Phys. Lett. 77 886Google Scholar

    [3]

    Donni A, Fischer P, Fauth F, Convert P, Aoki Y, Sugawara H, Sato H 1999 Physica B 259 705

    [4]

    Wu G H, Yu C H, Meng L Q, Chen J L, Yang F M, Qi S R, Zhan W S 1999 Appl. Phys. Lett. 75 2990Google Scholar

    [5]

    Saha B, Shakouri A, Sands T D 2018 Appl. Phys. Rev. 5 021101Google Scholar

    [6]

    Webster P J 1971 J. Phys. Chem. Solids 32 1221Google Scholar

    [7]

    Kübler J, William A R, Sommers C B 1983 Phys. Rev. B 28 1745Google Scholar

    [8]

    de Groot R A, Müller F M, van Engen P G, Buschow K H J 1983 Phys. Rev. Lett. 50 2024Google Scholar

    [9]

    Comtesse D, Geisler B, Entel P, Kratzer P, Szunyogh L 2014 Phys. Rev. B 89 094410Google Scholar

    [10]

    Fecher G H, Felser C 2007 J. Phys. D: Appl. Phys. 40 1582Google Scholar

    [11]

    Li X M, Li T, Chen Z F, Hui F, Li X S, Wang X R, Xu J B, Zhu H W 2017 Appl. Phys. Rev. 4 021306Google Scholar

    [12]

    Balli M, Jandl S, Fournier P, Kedous-Lebouc A 2017 Appl. Phys. Rev. 4 021305Google Scholar

    [13]

    Kainuma R, Imano Y, Ito W, Sutou Y, Morito H, Okamoto S, Kitakami O, Oikawa K, Fujita A, Kanomata T, Ishida K 2006 Nature 439957

    [14]

    Yu S Y, Liu Z H, Liu G D, Chen J L, Cao Z X, Wu G H, Zhang B, Zhang X X 2006 Appl. Phys. Lett. 89 162503Google Scholar

    [15]

    Dubenko I, Pathak A K, Stadler S, Ali N, Kovarskii Y, Prudnikov V N, Perov N S, Granovsky A B 2009 Phys. Rev. B 80 092408Google Scholar

    [16]

    Karaca H E, Karaman I, Basaran B, Ren Y, Chumlyakov Y I, Maier H J 2009 Adv. Funct. Mater. 19 983Google Scholar

    [17]

    Chmielus M, Zhang X X, Witherspoon C, Dunand D C, Mullner P 2009 Nat. Mater. 8 863Google Scholar

    [18]

    Sarawate N, Dapino M 2006 Appl. Phys. Lett. 88 121923Google Scholar

    [19]

    Mañosa L, González-Alonso D, Planes A, Bonnot E, Barrio M, Tamarit J L, Aksoy S, Acet M 2010 Nat. Mater. 9 478Google Scholar

    [20]

    Barman S R, Chakrabarti A, Singh S, Banik S, Bhardwaj S, Paulose P L, Chalke B A, Panda A K, Mitra A, Awasthi A M 2008 Phys. Rev. B 78 134406Google Scholar

    [21]

    Zayak A T, Entel P, Rabe K M, Adeagbo W A, Acet M 2005 Phys. Rev. B 72 054113Google Scholar

    [22]

    罗礼进, 仲崇贵, 董正超, 方靖淮, 周朋霞, 江学范 2010 物理学报 59 8037Google Scholar

    Luo L J, Zhong C G, Dong Z C, Fang J H, Zhou P X, Jiang X F 2010 Acta Phys. Sin. 59 8037Google Scholar

    [23]

    罗礼进, 仲崇贵, 江学范, 方靖淮, 蒋青 2010 物理学报 59 521Google Scholar

    Luo L J, Zhong C G, Jiang X F, Fang J H, Jiang Q 2010 Acta Phys. Sin. 59 521Google Scholar

    [24]

    罗礼进, 仲崇贵, 赵永林, 方靖淮, 周朋霞, 江学范 2011 物理学报 60 127502Google Scholar

    Luo L J, Zhong C G, Zhao Y L, Fang J H, Zhou P X, Jiang X F 2011 Acta Phys. Sin. 60 127502Google Scholar

    [25]

    罗礼进, 仲崇贵, 董正超, 方靖淮, 周朋霞, 江学范 2012 物理学报 61 207503Google Scholar

    Luo L J, Zhong C G, Dong Z C, Fang J H, Zhou P X, Jiang X F 2012 Acta Phys. Sin. 61 207503Google Scholar

    [26]

    Luo H Z, Jia P Z, Liu G D, Meng F B, Liu H Y, Liu E K, Wang W H, Wu G H, 2013 Solid State Commun. 17044

    [27]

    Luo H Z, Meng F B, Liu G D, Liu H Y, Jia P Z, Liu E K, Wang W H, Wu G H 2013 Intermetallics 38 139Google Scholar

    [28]

    Kress G, Hafner J 1993 Phys. Rev. B 47 558Google Scholar

    [29]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671Google Scholar

    [30]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [31]

    Kandpal H C, Fecher G H, Felser C 2007 J. Phys. D: Appl. Phys. 40 1507Google Scholar

    [32]

    Madsen G K H, Singh D J 2006 Comput. Phys. Commum. 175 67Google Scholar

    [33]

    Galanakis I, Mavropoulos P, Dederichs P H 2006 J. Phys. D: Appl. Phys. 39 765Google Scholar

    [34]

    Sargolzaei M, Richter M, Koepernik K, Opahle I, Eschrig H, Chaplygin I 2006 Phys. Rev. B 74 224410Google Scholar

    [35]

    Jansen H J F, Freeman A J 1984 Phys. Rev. B 30 561Google Scholar

    [36]

    Li J, Li J, Zhang Q, Zhang Z D, Yang G, Ma H R, Lu Z M, Fang W, Xie H X, Liang C Y, Yin F X 2016 Comp. Mater. Sci. 125 183Google Scholar

    [37]

    Li J, Yang G, Yang Y M, Ma H R, Zhang Q, Zhang Z D, Fang W, Yin F X, Li J 2017 J. Magn. Magn. Mater. 442 371Google Scholar

    [38]

    Kourov N I, Marchenkov V V, Perevozchikova Y A, Weber H W 2017 Phys. Solid State 59 898Google Scholar

    [39]

    Bilc D I, Mahanti S D, Kanatzidis M G 2006 Phys. Rev. B 74 125202Google Scholar

    [40]

    Al S, Arikan N, Demir S, Iyig€or A 2018 Physica B 531 16Google Scholar

    [41]

    Li J, Zhang Z D, Sun Y B, Zhang J, Zhou G X, Luo H Z, Liu G D 2013 Physica B 409 35Google Scholar

    [42]

    Okamura S, Miyazaki A, Sugimoto S 2005 Appl. Phys. Lett. 86 232503Google Scholar

    [43]

    Zhu W H, Wu D, Zhao B C, Zhu Z D, Yang X D, Zhang Z Z, Jin Q Y 2017 Phys. Rev. Appl. 8 034012

    [44]

    Hazra B K, Raja M M, Srinath S 2016 J. Phys. D: Appl. Phys. 49 065007Google Scholar

    [45]

    Xu Z, Zhang Z, Hu F, Liu E, Xu F 2016 Mater. Res. Express 3 116103Google Scholar

    [46]

    Yadav A, Chaudhary S 2015 J. Appl. Phys. 118 193902Google Scholar

    [47]

    Chen J, Sakuraba Y, Masuda K, Miura Y, Li S, Kasai S, Furubayashi T, Hono K 2017 Appl. Phys. Lett. 110 242401Google Scholar

    [48]

    Huang X F, Dai Z W, Huang L, Lu G D, Liu M, Piao H G, Kim D H, Yu S C, Pan L Q 2016 J. Phys.: Condens. Matter 284 76006

  • 图 1  (a) Co2FeAl1xSix (x = 0.25)的L21结构; (b) Co2FeAl0.75Si0.25的薄膜结构

    Figure 1.  (a) L21 structure of Co2FeAl1-xSix (x = 0.25); (b)thin film structure of Co2FeAl0.75Si0.25.

    图 2  Co2FeAl1-xSix合金在铁磁态(FM)和反铁磁态(AFM)下的晶格常数优化曲线 (a) x = 0.25; (b) x = 0.5; (c) x = 0.75

    Figure 2.  Optimization curves of lattice constant for Co2FeAl1-xSix alloy under ferromagnetic and antiferromagnetic magnetic order.

    图 3  (a) Co2FeAl0.75Si0.25, (b) Co2FeAl0.5Si0.5和(c) Co2FeAl0.25Si0.75的能带结构

    Figure 3.  Energy band structure of (a) Co2FeAl0.75Si0.25, (b) Co2FeAl0.5Si0.5 and (c) Co2FeAl0.25Si0.75.

    图 4  (a) Co2FeAl0.75Si0.25,(b) Co2FeAl0.5Si0.5和(c) Co2FeAl0.25Si0.75的总态密度和分态密度

    Figure 4.  Thetotaland atom-projected density of states for Heusler alloys Co2FeAl1-xSix (x = 0.25, 0.5, 0.75) film in (a), (b) and (c).

    图 5  Co2FeAl0.75Si0.25向下自旋态的(a)Seebeck系数, (b)电导, (c)热导和(d)功率因子随化学势的变化; Co2FeAl0.5Si0.5向下自旋态的(e) Seebeck系数, (f)电导, (g)热导和(h) 功率因子随化学势的变化; Co2FeAl0.25Si0.75向下自旋态的(i)Seebeck系数, (j)电导, (k)热导和(l)功率因子随化学势的变化

    Figure 5.  The transport properties with variation of chemical potential $\mu $ for Co2FeAl1-xSix(x = 0.25, 0.5 and 0.75). The case of x = 0.25 corresponds to (a), (b), (c) and (d), and the case of x = 0.5 corresponds to (e), (f), (g) and (h), and the case of x = 0.75 corresponds to (i), (j), (k) and (l). The four columns from left to right correspond to the Seebeck coefficients S, electrical conductivity $\sigma $, electronic thermal conductivity ${\kappa _{\rm{e}}}$ and PF (${S^2}\sigma $), respectively.

    图 6  Co2FeAl1xSix合金在x = 0.25, 0.5, 0.75时的声子谱及比热容 (a) Co2FeAl1xSix (x = 0.25), (b) Co2FeAl1xSi x (x = 0.5)和(c) Co2FeAl1xSi x (x = 0.75)的声子谱; (d) Co2FeAl1 xSix (x = 0.25, 0.5, 0.75)的比热容随温度的变化

    Figure 6.  Full phonon spectra of Co2FeAl1xSix (x = 0.25, 0.5 and 0.75) alloys in (a), (b) and (c). The temperature dependent heat capacity Cv with an inset graph showing the temperaturefrom 180 K to 250 K in (d).

    图 7  (a) Co2FeAl0.75Si0.25, (b) Co2FeAl0.5Si0.5和(c) Co2FeAl0.25Si0.75薄膜的总态密度和原子分态密度

    Figure 7.  Thetotaland atom-projected density of states for Co2FeAl1xSix (x = 0.25, 0.5 and 0.75) film in (a), (b) and (c).

    图 8  (a) x = 0.25,(b) x = 0.5和(c) x = 0.75替代浓度下Co2FeAl1xSix合金体相的总能量差$\Delta E$与畸变度c/a的关系; (d) x = 0.25, (e) x = 0.5和(f) x = 0.75替代浓度下Co2FeAl1-xSix薄膜的驱动力$\Delta E$与畸变度c/a的关系

    Figure 8.  Calculated total energies as a function of the c/a ratio for Co2FeAl1xSix (x = 0.25, 0.5 and 0.75) Heusler alloys in (a), (b) and (c) andfilm materials in (d), (e) and (f).

    图 9  (a) x = 0.25,(b) x = 0.5和(c) x = 0.75替代浓度下Co2FeAl1-xSix合金薄膜的总磁矩及各原子总磁矩随畸变度的变化

    Figure 9.  The total magnetic moment and the magnetic moment of each atom of Co2FeAl1-xSix film change with distortion at x = 0.25, x = 0.5 and x = 0.75 in (a), (b) and (c).

    表 1  Co2FeAl1xSix合金在x = 0.25, 0.5, 0.75时的晶格参数及磁矩

    Table 1.  Lattice parameters and magnetic moments of Co2FeAl1xSix alloys at x = 0.25, 0.5 and 0.75.

    amAl/${{\text{μ}}_{\rm{B}}}$mSi/${{\text{μ}}_{\rm{B}}}$mFe/${{\text{μ}}_{\rm{B}}}$mCo/${{\text{μ}}_{\rm{B}}}$Mt/${{\text{μ}}_{\rm{B}}}$
    Co2FeAl0.75Si0.255.6520–0.053–0.0392.9981.2625.473
    Co2FeAl0.5Si0.55.6607–0.046–0.0283.0371.3375.688
    Co2FeAl0.25Si0.755.6406–0.038–0.0123.0941.4005.891
    DownLoad: CSV

    表 2  计算的Co2FeAl1xSix (x = 0.25, x = 0.5, x = 0.75)合金的弹性常数、体模量及剪切模量

    Table 2.  The calculated cubic elastic constant C11, C12, C44, shear modulus Gv, GR and GH in GPa.

    C11/GPaC12/GPaC44/GPaB/GPaGV/GPaGR/GPaGH/GPa
    Co2FeAl0.75Si0.25247.38166.97142.33193.77101.4870.6086.04
    Co2FeAl0.5Si0.5266.15143.57141.73184.43109.5592.94101.25
    Co2FeAl0.25Si0.75176.4651.042137.6792.85107.6993.14100.42
    DownLoad: CSV
  • [1]

    Heusler F 1903 Deut. Phys. Ges. 5 219

    [2]

    Murray S J, Marioni M, Allen S M, O’Handley R C 2000 Appl. Phys. Lett. 77 886Google Scholar

    [3]

    Donni A, Fischer P, Fauth F, Convert P, Aoki Y, Sugawara H, Sato H 1999 Physica B 259 705

    [4]

    Wu G H, Yu C H, Meng L Q, Chen J L, Yang F M, Qi S R, Zhan W S 1999 Appl. Phys. Lett. 75 2990Google Scholar

    [5]

    Saha B, Shakouri A, Sands T D 2018 Appl. Phys. Rev. 5 021101Google Scholar

    [6]

    Webster P J 1971 J. Phys. Chem. Solids 32 1221Google Scholar

    [7]

    Kübler J, William A R, Sommers C B 1983 Phys. Rev. B 28 1745Google Scholar

    [8]

    de Groot R A, Müller F M, van Engen P G, Buschow K H J 1983 Phys. Rev. Lett. 50 2024Google Scholar

    [9]

    Comtesse D, Geisler B, Entel P, Kratzer P, Szunyogh L 2014 Phys. Rev. B 89 094410Google Scholar

    [10]

    Fecher G H, Felser C 2007 J. Phys. D: Appl. Phys. 40 1582Google Scholar

    [11]

    Li X M, Li T, Chen Z F, Hui F, Li X S, Wang X R, Xu J B, Zhu H W 2017 Appl. Phys. Rev. 4 021306Google Scholar

    [12]

    Balli M, Jandl S, Fournier P, Kedous-Lebouc A 2017 Appl. Phys. Rev. 4 021305Google Scholar

    [13]

    Kainuma R, Imano Y, Ito W, Sutou Y, Morito H, Okamoto S, Kitakami O, Oikawa K, Fujita A, Kanomata T, Ishida K 2006 Nature 439957

    [14]

    Yu S Y, Liu Z H, Liu G D, Chen J L, Cao Z X, Wu G H, Zhang B, Zhang X X 2006 Appl. Phys. Lett. 89 162503Google Scholar

    [15]

    Dubenko I, Pathak A K, Stadler S, Ali N, Kovarskii Y, Prudnikov V N, Perov N S, Granovsky A B 2009 Phys. Rev. B 80 092408Google Scholar

    [16]

    Karaca H E, Karaman I, Basaran B, Ren Y, Chumlyakov Y I, Maier H J 2009 Adv. Funct. Mater. 19 983Google Scholar

    [17]

    Chmielus M, Zhang X X, Witherspoon C, Dunand D C, Mullner P 2009 Nat. Mater. 8 863Google Scholar

    [18]

    Sarawate N, Dapino M 2006 Appl. Phys. Lett. 88 121923Google Scholar

    [19]

    Mañosa L, González-Alonso D, Planes A, Bonnot E, Barrio M, Tamarit J L, Aksoy S, Acet M 2010 Nat. Mater. 9 478Google Scholar

    [20]

    Barman S R, Chakrabarti A, Singh S, Banik S, Bhardwaj S, Paulose P L, Chalke B A, Panda A K, Mitra A, Awasthi A M 2008 Phys. Rev. B 78 134406Google Scholar

    [21]

    Zayak A T, Entel P, Rabe K M, Adeagbo W A, Acet M 2005 Phys. Rev. B 72 054113Google Scholar

    [22]

    罗礼进, 仲崇贵, 董正超, 方靖淮, 周朋霞, 江学范 2010 物理学报 59 8037Google Scholar

    Luo L J, Zhong C G, Dong Z C, Fang J H, Zhou P X, Jiang X F 2010 Acta Phys. Sin. 59 8037Google Scholar

    [23]

    罗礼进, 仲崇贵, 江学范, 方靖淮, 蒋青 2010 物理学报 59 521Google Scholar

    Luo L J, Zhong C G, Jiang X F, Fang J H, Jiang Q 2010 Acta Phys. Sin. 59 521Google Scholar

    [24]

    罗礼进, 仲崇贵, 赵永林, 方靖淮, 周朋霞, 江学范 2011 物理学报 60 127502Google Scholar

    Luo L J, Zhong C G, Zhao Y L, Fang J H, Zhou P X, Jiang X F 2011 Acta Phys. Sin. 60 127502Google Scholar

    [25]

    罗礼进, 仲崇贵, 董正超, 方靖淮, 周朋霞, 江学范 2012 物理学报 61 207503Google Scholar

    Luo L J, Zhong C G, Dong Z C, Fang J H, Zhou P X, Jiang X F 2012 Acta Phys. Sin. 61 207503Google Scholar

    [26]

    Luo H Z, Jia P Z, Liu G D, Meng F B, Liu H Y, Liu E K, Wang W H, Wu G H, 2013 Solid State Commun. 17044

    [27]

    Luo H Z, Meng F B, Liu G D, Liu H Y, Jia P Z, Liu E K, Wang W H, Wu G H 2013 Intermetallics 38 139Google Scholar

    [28]

    Kress G, Hafner J 1993 Phys. Rev. B 47 558Google Scholar

    [29]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671Google Scholar

    [30]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [31]

    Kandpal H C, Fecher G H, Felser C 2007 J. Phys. D: Appl. Phys. 40 1507Google Scholar

    [32]

    Madsen G K H, Singh D J 2006 Comput. Phys. Commum. 175 67Google Scholar

    [33]

    Galanakis I, Mavropoulos P, Dederichs P H 2006 J. Phys. D: Appl. Phys. 39 765Google Scholar

    [34]

    Sargolzaei M, Richter M, Koepernik K, Opahle I, Eschrig H, Chaplygin I 2006 Phys. Rev. B 74 224410Google Scholar

    [35]

    Jansen H J F, Freeman A J 1984 Phys. Rev. B 30 561Google Scholar

    [36]

    Li J, Li J, Zhang Q, Zhang Z D, Yang G, Ma H R, Lu Z M, Fang W, Xie H X, Liang C Y, Yin F X 2016 Comp. Mater. Sci. 125 183Google Scholar

    [37]

    Li J, Yang G, Yang Y M, Ma H R, Zhang Q, Zhang Z D, Fang W, Yin F X, Li J 2017 J. Magn. Magn. Mater. 442 371Google Scholar

    [38]

    Kourov N I, Marchenkov V V, Perevozchikova Y A, Weber H W 2017 Phys. Solid State 59 898Google Scholar

    [39]

    Bilc D I, Mahanti S D, Kanatzidis M G 2006 Phys. Rev. B 74 125202Google Scholar

    [40]

    Al S, Arikan N, Demir S, Iyig€or A 2018 Physica B 531 16Google Scholar

    [41]

    Li J, Zhang Z D, Sun Y B, Zhang J, Zhou G X, Luo H Z, Liu G D 2013 Physica B 409 35Google Scholar

    [42]

    Okamura S, Miyazaki A, Sugimoto S 2005 Appl. Phys. Lett. 86 232503Google Scholar

    [43]

    Zhu W H, Wu D, Zhao B C, Zhu Z D, Yang X D, Zhang Z Z, Jin Q Y 2017 Phys. Rev. Appl. 8 034012

    [44]

    Hazra B K, Raja M M, Srinath S 2016 J. Phys. D: Appl. Phys. 49 065007Google Scholar

    [45]

    Xu Z, Zhang Z, Hu F, Liu E, Xu F 2016 Mater. Res. Express 3 116103Google Scholar

    [46]

    Yadav A, Chaudhary S 2015 J. Appl. Phys. 118 193902Google Scholar

    [47]

    Chen J, Sakuraba Y, Masuda K, Miura Y, Li S, Kasai S, Furubayashi T, Hono K 2017 Appl. Phys. Lett. 110 242401Google Scholar

    [48]

    Huang X F, Dai Z W, Huang L, Lu G D, Liu M, Piao H G, Kim D H, Yu S C, Pan L Q 2016 J. Phys.: Condens. Matter 284 76006

  • [1] Wang Shao-Xia, Zhao Xu-Cai, Pan Duo-Qiao, Pang Guo-Wang, Liu Chen-Xi, Shi Lei-Qian, Liu Gui-An, Lei Bo-Cheng, Huang Yi-Neng, Zhang Li-Li. First principle study of influence of transition metal (Cr, Mn, Fe, Co) doping on magnetism of TiO2. Acta Physica Sinica, 2020, 69(19): 197101. doi: 10.7498/aps.69.20200644
    [2] Xu Jia-Ling, Jia Li-Yun, Jin Xiao-Qing, Hao Xing-Nan, Ma Li, Hou Deng-Lu. Structure and half-metallic ferromagnetism of quaternary Heusler compounds CoMnZnZ. Acta Physica Sinica, 2019, 68(15): 157501. doi: 10.7498/aps.68.20190207
    [3] Yao Zhong-Yu, Sun Li, Pan Meng-Mei, Sun Shu-Juan, Liu Han-Jun. First-principles study on half-metallic ferromagnetism of half-Heusler alloys VLiBi and CrLiBi. Acta Physica Sinica, 2018, 67(21): 217501. doi: 10.7498/aps.67.20181129
    [4] Hou Qing-Yu, Li Yong, Zhao Chun-Wang. First-principles study of Al-doped and vacancy on the magnetism of ZnO. Acta Physica Sinica, 2017, 66(6): 067202. doi: 10.7498/aps.66.067202
    [5] Yan Song-Ling, Tang Li-Ming, Zhao Yu-Qing. First-principles study of the electronic properties and magnetism of LaMnO3/SrTiO3 heterointerface with the different component thickness ratios. Acta Physica Sinica, 2016, 65(7): 077301. doi: 10.7498/aps.65.077301
    [6] Yao Zhong-Yu, Sun Li, Pan Meng-Mei, Sun Shu-Juan. First-principle studies of half-metallicities and magnetisms of the semi-Heusler alloys CoCrTe and CoCrSb. Acta Physica Sinica, 2016, 65(12): 127501. doi: 10.7498/aps.65.127501
    [7] Yang Biao, Wang Li-Ge, Yi Yong, Wang En-Ze, Peng Li-Xia. First-principles calculations of the diffusion behaviors of C, N and O atoms in V metal. Acta Physica Sinica, 2015, 64(2): 026602. doi: 10.7498/aps.64.026602
    [8] Ma Zhen-Ning, Jiang Min, Wang Lei. First-principles study of electronic structures and phase stabilities of ternary intermetallic compounds in the Mg-Y-Zn alloys. Acta Physica Sinica, 2015, 64(18): 187102. doi: 10.7498/aps.64.187102
    [9] Hu Jie-Qiong, Xie Ming, Zhang Ji-Ming, Liu Man-Men, Yang You-Cai, Chen Yong-Tai. First principles study of Au-Sn intermetallic compounds. Acta Physica Sinica, 2013, 62(24): 247102. doi: 10.7498/aps.62.247102
    [10] Huang You-Lin, Hou Yu-Hua, Zhao Yu-Jun, Liu Zhong-Wu, Zeng De-Chang, Ma Sheng-Can. Influences of strain on electronic structure and magnetic properties of CoFe2O4 from first-principles study. Acta Physica Sinica, 2013, 62(16): 167502. doi: 10.7498/aps.62.167502
    [11] Du Yin, Wang Wen-Hong, Zhang Xiao-Ming, Liu En-Ke, Wu Guang-Heng. Structural, magnetic, transport, and half-metallic properties of Fe2Co1-xCrxSi Heusler alloys. Acta Physica Sinica, 2012, 61(14): 147304. doi: 10.7498/aps.61.147304
    [12] Zhang Fu-Chun, Zhang Wei-Hu, Dong Jun-Tang, Zhang Zhi-Yong. Electronic structure and magnetism of Cr-doped ZnO nanowires. Acta Physica Sinica, 2011, 60(12): 127503. doi: 10.7498/aps.60.127503
    [13] Yao Zhong-Yu, Fu Jun, Gong Shao-Hua, Zhang Yue-Sheng, Yao Kai-Lun. Influence of lattice uniform strain on half-metallicity and magnetism of zinc-blende CrS and CrSe. Acta Physica Sinica, 2011, 60(12): 127103. doi: 10.7498/aps.60.127103
    [14] Luo Li-Jin, Zhong Chong-Gui, Fang Jing-Huai, Zhao Yong-Lin, Zhou Peng-Xia, Jiang Xue-Fan. Responses of electronic structure and magnetism to tetragonal distortion and their influence on pressure for the Heusler alloy Mn2 NiAl. Acta Physica Sinica, 2011, 60(12): 127502. doi: 10.7498/aps.60.127502
    [15] Nie Zhao-Xiu, Wang Feng, Cheng Zhi-Mei, Wang Xin-Qiang, Lu Li-Ya, Liu Gao-Bin, Duan Zhuang-Fen. First-principles study on electronic structure and half-metallicferromagnetism of ternary compound ZnCrS. Acta Physica Sinica, 2011, 60(9): 096301. doi: 10.7498/aps.60.096301
    [16] Zhao Jing-Jing, Qi Xin, Liu En-Ke, Zhu Wei, Qian Jin-Feng, Li Gui-Jiang, Wang Wen-Hong, Wu Guang-Heng. Structural, magnetic and half-metallic properties of CoFeMnSi alloys. Acta Physica Sinica, 2011, 60(4): 047108. doi: 10.7498/aps.60.047108
    [17] Wang Yu-Mei, Pei Hui-Xia, Ding Jun, Wen Li-Wei. First-principles study of magnetism and electronic structureof Sb-containing half-Heusler alloys. Acta Physica Sinica, 2011, 60(4): 047110. doi: 10.7498/aps.60.047110
    [18] Luo Li-Jin, Zhong Chong-Gui, Jiang Xue-Fan, Fang Jing-Huai, Jiang Qing. A first-principles study of electronic structure, magnetism, response to pressure and tetragonal distortions of Ni2MnSi Heusler alloy. Acta Physica Sinica, 2010, 59(1): 521-526. doi: 10.7498/aps.59.521
    [19] Duan Man-Yi, Xu Ming, Zhou Hai-Ping, Shen Yi-Bin, Chen Qing-Yun, Ding Ying-Chun, Zhu Wen-Jun. First-principles study on the electronic structure and optical properties of ZnO doped with transition metal and N. Acta Physica Sinica, 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
    [20] Zhang Jia-Hong, Ma Rong, Liu Su, Liu Mei. First-principles calculations on the superconductivity and magnetism of doping MgCNi3. Acta Physica Sinica, 2006, 55(9): 4816-4821. doi: 10.7498/aps.55.4816
Metrics
  • Abstract views:  8131
  • PDF Downloads:  122
  • Cited By: 0
Publishing process
  • Received Date:  03 September 2018
  • Accepted Date:  24 December 2018
  • Available Online:  01 February 2019
  • Published Online:  20 February 2019

/

返回文章
返回