Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Snoek-type relaxation caused by interstitial atoms in sintered β-type Ti-Nb alloy

Zhou Zheng-Cun Du Jie Zhu Xiao-Bin Yan Yong-Jian Wang Xing-Fu

Citation:

Snoek-type relaxation caused by interstitial atoms in sintered β-type Ti-Nb alloy

Zhou Zheng-Cun, Du Jie, Zhu Xiao-Bin, Yan Yong-Jian, Wang Xing-Fu
PDF
HTML
Get Citation
  • The β-type Ti-Nb alloys are potential shape memory and superelasticity materials. The interstitial atoms in the alloys have important effect on their physical and mechanical properties. For the interstitial atoms, the internal friction technique can be used to detect their distributions and status in the alloys. The influences of chemical compositions and heat treatments on the microstructures of the containing-oxygen Ti-Nb alloys are given, and a clear understanding and the relaxational mechanism of the internal friction peak correlated with oxygen are also clearly discussed by investigating the internal friction behavior of the alloys and the detecting their microstructures. The Ti-Nb alloys with different Nb content values are prepared by powder metallurgy. The internal friction behaviors of Ti-Nb alloys with different Nb content values and heat treatments are investigated by using dynamic mechanical analysis (dynamic mechanical analyzer, DMA) Q800 from TA Instruments in single cantilever mode under different testing parameters and conditions from room temperature to 350 ℃. The X-ray diffraction experiments are also carried out in order to detect the differences among the microstructures of the specimens with different heat treatments for the Ti-35.4Nb alloy. It is shown that relaxational internal friction peaks are found on the internal friction temperature dependent curves of the sintered and water-quenched alloys. The internal friction peak is correlated with Nb content. The peak does not appear in the sintered Ti-Nb alloys with low Nb content. The maximum of the internal friction peak appears in the quenched alloy with about 35% Nb. The internal friction peak height increases monotonically with Nb content increasing in the present testing composition range for the sintered alloys. The relaxation parameters are the activation energy Hwq = (1.67 ± 0.1) eV and the preexponential factor τowq = 1.1 × 10-17 ± 1 s for the quenched Ti-35.4Nb alloy . In addition, the peak height also depends on heat treatment. The water-quenched Ti-35.4Nb alloy has much higher internal friction peak than the as-sintered alloy with identical compositions. The internal friction peak height is also correlated with the quenching temperature. It is found that the peak is linked to the β phase of Ti-Nb alloys and that the peak height is determined by the stability and amount of the β phase from their microstructures. When the stability of the β phase decreases, the peak height increases, and the increase in the amount of β phase results in the increase of the peak height. The β phase in the quenched Ti-35.4Nb specimen is metastable β phase (βM), which can be transformed into the stable α and βS by ageing. The β phase in as-sintered specimen is the stable β phase (βS). The modifications of microstructures of the specimens with different heat treatments result in the difference in peak height between the water-quenched and as-sintered Ti-35.4Nb specimens. That the peak height presents a maximum in the vicinity of 35 wt.% Nb for the quenched alloys results from the variation of the stability and amount of βM with Nb content. That the height of the peak increases monotonically with Nb content increasing in as-sintered alloys is attributed to the increase of the amount of βS. It is suggested that the internal friction peak is related to oxygen jump in lattice or the interaction between the oxygen-substitute atoms in βM phase for the water-quenched alloys and those in βS phase for the as-sintered alloys.
      Corresponding author: Zhou Zheng-Cun, 1355326160@qq.com
    [1]

    Murray J L 1987 Phase Diagram of Binary Titanium Alloys, Materials Park (Ohio: American Society for Metals) p188

    [2]

    Chen W M 2018 Calphad 60 98Google Scholar

    [3]

    Grandini C R, Florêncio O, Filho W J B 2012 Defect Diffus. Forum 326-328 708

    [4]

    Isaenkova M, Perlovich Y, Efimova E, Dmitry Z, Krymskaya O 2017 Mater. Sci. Forum 879 2561

    [5]

    Blanter M S, Golovin I S, Neuhäuser H, Sinning H R 2007 Internal Friction in Metallic Materials: A Handbook (Springer Series in Materials Science) (Vol. 90) (Berlin: Springer Berlin Heidelberg) pp1−320

    [6]

    Nowick A S, Berry B S 1972 Anelastic Relaxation in Crystalline Solids (Now York and London: Academic Press) p55, pp225−247

    [7]

    Saitoh H, Yoshinaga N, Ushioda K 2004 Acta Mater. 52 1255Google Scholar

    [8]

    Cantelli R 2006 Mater. Sci. Eng. A 442 5Google Scholar

    [9]

    Weller M 2006 Mater. Sci. Eng. A 442 21Google Scholar

    [10]

    Yin F X, Iwasaki S, Ping D H, Nagai K 2006 Adv. Mater. 18 1541Google Scholar

    [11]

    Yin F X, Yu L, Ping D H, Iwasaki S 2009 Mater. Sci. Forum 614 175Google Scholar

    [12]

    Florêncio O, Botta F W J, Grandini C R, Tejima H, Jodāo J A R 1994 J. Alloys Comp. 211−212 37Google Scholar

    [13]

    Almeida L H , Grandini C R, Caram R 2009 Mater. Sci. Eng. A 521−522 59Google Scholar

    [14]

    Yin F X, Yu L, Ping D H 2009 Mater. Sci. Eng. A 521−522 372Google Scholar

    [15]

    Lu H, Li C X, Yin F X, Fang Q F, Umezawa O 2012 Mater. Sci. Eng. A 541 28Google Scholar

    [16]

    Lu H, Li C X, Yin F X, Fang Q F,Umezawa O 2012 Solid State Phenom. 184 75Google Scholar

    [17]

    Niemeyer T C, Gimenez J M A, Almeida L H, Grandini C R, Florêncio O 2002 Met. Res. 15 143

    [18]

    Yu L, Yin F, Ping D 2007 Phys. Rev. B 75 174105Google Scholar

    [19]

    Hartley C S, Steedly J E, Parsons L D 1965 in: Wheeler J A, Winslow F R (Editors) Diffusion in Body-centered Cubic Metals (Ohio: American Society for Metals)

    [20]

    Miyazaki S, Kim H Y, Hosoda H 2006 Mater. Sci. Eng. A 438–440 18

    [21]

    Matlakhova L A, Matlakhov A N, Monteiro S N 2008 Mater. Charact. 59 1234Google Scholar

    [22]

    Zhou Z C, Du J, Zhang Y K, Gu S Y, Yan Y J, Yang H 2014 International Heat Treatment and Surface Engineering 8 144Google Scholar

    [23]

    Abdel-Hady M, Hinoshita K, Morinaga M 2006 Scripta Mater. 55 477Google Scholar

    [24]

    Rack H J, Kalish D, Fike K D 1970 Mater. Sci. Eng. 6 181Google Scholar

    [25]

    Mantani Y, Tajima M 2006 Mater. Sci. Eng. A 442 409Google Scholar

    [26]

    Fan Z 1993 Scripta Metall. Mater. 29 1427Google Scholar

    [27]

    Ren X, Hagiwara M 2001 Acta Met. 49 3971Google Scholar

    [28]

    Ping D H, Mitarai Y, Yin F X 2005 Scripta Mater. 52 1287Google Scholar

    [29]

    Kim H Y, Kim J I, Inamura T, Hosoda H, Miyazaki S 2006 Mater. Sci. Eng. A 438−440 839

    [30]

    Chang L L, Wang Y D, Ren Y 2016 Mater. Sci. Eng. A 651 442Google Scholar

    [31]

    Dai S J, Wang Y, Chen F 2015 Mater. Charact. 104 16Google Scholar

    [32]

    Martins Jr J R S, Araujo R O, Nogueira R A, Grandini C R 2016 Arch. Metall. Mater. 61 25Google Scholar

  • 图 1  水淬的Ti-35.4 Nb合金tanδ和存储模量随温度和频率的变化关系(ε = 3 × 10–4)

    Figure 1.  tanδ and storage modulus as a function of temperature for the water-quenched Ti-35.4 Nb alloy at different vibration frequencies (ε = 3 × 10–4)

    图 2  水淬的Ti-35.4Nb合金在不同应变振幅条件下tanδ 随温度的变化(f = 1 Hz)

    Figure 2.  tanδ as a function of temperature for the water-quenched Ti-35.4Nb alloy for different amplitude (f = 1 Hz)

    图 3  水淬的Ti-Nb合金样品内耗峰高度随Nb含量的变化关系(ε = (2.4—4.3) × 10–4, f = 1 Hz)

    Figure 3.  The dependence of the peak height on Nb content for the water-quenched Ti-Nb alloys (ε = (2.4−4.3) × 10–4, f = 1 Hz)

    图 4  烧结态Ti-35.4 Nb合金Tanδ和存储模量随温度和频率的变化关系(ε = 3.7 × 10–4)

    Figure 4.  Tanδ and storage modulus as a function of temperature for the as-sintered Ti-35.4 Nb alloy at different vibration frequencies (ε = 3.7 × 10–4)

    图 5  烧结态的Ti-Nb合金样品内耗峰高度随Nb含量的变化关系(ε = (2.5—4.0) × 10–4, f = 1 Hz)

    Figure 5.  The dependence of the peak height on Nb content for the as-sintered Ti-Nb alloys (ε = (2.5−4.0) × 10–4, f = 1 Hz)

    图 6  三种热处理状态的Ti-35.4Nb合金样品的XRD结果

    Figure 6.  XRD results of three Ti-35.4Nb specimens with different heat treatments

    图 7  淬火温度对水淬Ti-35.4Nb样品弛豫强度的影响(ε = (2.8—3.7) × 10–4, f = 1 Hz)

    Figure 7.  The influence of water-quenching temperature on the relaxation strength of the water-quenched Ti-35.4Nb specimen (ε = (2.8−3.7) × 10–4, f = 1 Hz)

    图 8  室温至350 ℃热循环次数对水淬的Ti-35.4 Nb合金的tanδ和存储模量的影响(ε = 3 × 10–4, f = 1 Hz)

    Figure 8.  Influences of thermal cycles between room temperature and 350 ℃ on tanδ and storage modulus for the water-quenched Ti-35.4 Nb alloy (ε = 3 × 10–4, f = 1 Hz)

  • [1]

    Murray J L 1987 Phase Diagram of Binary Titanium Alloys, Materials Park (Ohio: American Society for Metals) p188

    [2]

    Chen W M 2018 Calphad 60 98Google Scholar

    [3]

    Grandini C R, Florêncio O, Filho W J B 2012 Defect Diffus. Forum 326-328 708

    [4]

    Isaenkova M, Perlovich Y, Efimova E, Dmitry Z, Krymskaya O 2017 Mater. Sci. Forum 879 2561

    [5]

    Blanter M S, Golovin I S, Neuhäuser H, Sinning H R 2007 Internal Friction in Metallic Materials: A Handbook (Springer Series in Materials Science) (Vol. 90) (Berlin: Springer Berlin Heidelberg) pp1−320

    [6]

    Nowick A S, Berry B S 1972 Anelastic Relaxation in Crystalline Solids (Now York and London: Academic Press) p55, pp225−247

    [7]

    Saitoh H, Yoshinaga N, Ushioda K 2004 Acta Mater. 52 1255Google Scholar

    [8]

    Cantelli R 2006 Mater. Sci. Eng. A 442 5Google Scholar

    [9]

    Weller M 2006 Mater. Sci. Eng. A 442 21Google Scholar

    [10]

    Yin F X, Iwasaki S, Ping D H, Nagai K 2006 Adv. Mater. 18 1541Google Scholar

    [11]

    Yin F X, Yu L, Ping D H, Iwasaki S 2009 Mater. Sci. Forum 614 175Google Scholar

    [12]

    Florêncio O, Botta F W J, Grandini C R, Tejima H, Jodāo J A R 1994 J. Alloys Comp. 211−212 37Google Scholar

    [13]

    Almeida L H , Grandini C R, Caram R 2009 Mater. Sci. Eng. A 521−522 59Google Scholar

    [14]

    Yin F X, Yu L, Ping D H 2009 Mater. Sci. Eng. A 521−522 372Google Scholar

    [15]

    Lu H, Li C X, Yin F X, Fang Q F, Umezawa O 2012 Mater. Sci. Eng. A 541 28Google Scholar

    [16]

    Lu H, Li C X, Yin F X, Fang Q F,Umezawa O 2012 Solid State Phenom. 184 75Google Scholar

    [17]

    Niemeyer T C, Gimenez J M A, Almeida L H, Grandini C R, Florêncio O 2002 Met. Res. 15 143

    [18]

    Yu L, Yin F, Ping D 2007 Phys. Rev. B 75 174105Google Scholar

    [19]

    Hartley C S, Steedly J E, Parsons L D 1965 in: Wheeler J A, Winslow F R (Editors) Diffusion in Body-centered Cubic Metals (Ohio: American Society for Metals)

    [20]

    Miyazaki S, Kim H Y, Hosoda H 2006 Mater. Sci. Eng. A 438–440 18

    [21]

    Matlakhova L A, Matlakhov A N, Monteiro S N 2008 Mater. Charact. 59 1234Google Scholar

    [22]

    Zhou Z C, Du J, Zhang Y K, Gu S Y, Yan Y J, Yang H 2014 International Heat Treatment and Surface Engineering 8 144Google Scholar

    [23]

    Abdel-Hady M, Hinoshita K, Morinaga M 2006 Scripta Mater. 55 477Google Scholar

    [24]

    Rack H J, Kalish D, Fike K D 1970 Mater. Sci. Eng. 6 181Google Scholar

    [25]

    Mantani Y, Tajima M 2006 Mater. Sci. Eng. A 442 409Google Scholar

    [26]

    Fan Z 1993 Scripta Metall. Mater. 29 1427Google Scholar

    [27]

    Ren X, Hagiwara M 2001 Acta Met. 49 3971Google Scholar

    [28]

    Ping D H, Mitarai Y, Yin F X 2005 Scripta Mater. 52 1287Google Scholar

    [29]

    Kim H Y, Kim J I, Inamura T, Hosoda H, Miyazaki S 2006 Mater. Sci. Eng. A 438−440 839

    [30]

    Chang L L, Wang Y D, Ren Y 2016 Mater. Sci. Eng. A 651 442Google Scholar

    [31]

    Dai S J, Wang Y, Chen F 2015 Mater. Charact. 104 16Google Scholar

    [32]

    Martins Jr J R S, Araujo R O, Nogueira R A, Grandini C R 2016 Arch. Metall. Mater. 61 25Google Scholar

  • [1] Mi Xiao-Lei, Hu Liang, Wu Bo-Wen, Long Qiang, Wei Bing-Bo. Influence of gadolinium content on magnetic property and oxidation mechanism of Fe-B-Nb-Gd metallic glass. Acta Physica Sinica, 2024, 73(9): 097102. doi: 10.7498/aps.73.20232040
    [2] Li Yu-Chuan, Hao Gang-Ling, Wang Jin, Wang Wei-Guo, Wang Xin-Fu, Wang Dan. Internal friction of Ni-Al intermetallic compound formation in sintering process. Acta Physica Sinica, 2021, 70(5): 056102. doi: 10.7498/aps.70.20201422
    [3] Lu Xiao-Mei, Huang Feng-Zhen, Zhu Jin-Song. Domains in ferroelectrics: formation, structure, mobility and related properties. Acta Physica Sinica, 2020, 69(12): 127704. doi: 10.7498/aps.69.20200312
    [4] Hao Gang-Ling, Xu Qiao-Ping, Li Xian-Yu, Wang Wei-Guo. Internal friction characteristics of compacted billet of metal powder in sintering process. Acta Physica Sinica, 2019, 68(12): 126101. doi: 10.7498/aps.68.20190031
    [5] Cheng Chao, Wang Xun, Sun Jia-Xing, Cao Chao-Ming, Ma Yun-Li, Liu Yan-Xia. Electronic structure calculation of Cr content effect on corrosion resistance of Ti-Nb-Cr alloy. Acta Physica Sinica, 2018, 67(19): 197101. doi: 10.7498/aps.67.20180956
    [6] Yang Jing-Jie, Zhao Jin-Liang, Xu Lei, Zhang Hong-Guo, Yue Ming, Liu Dan-Min, Jiang Yi-Jian. Influences of interstitial atoms H, B and C on magnetic properties and magnetocaloric effect in LaFe11.5Al1.5 compound. Acta Physica Sinica, 2018, 67(7): 077501. doi: 10.7498/aps.67.20172250
    [7] Huang Ao, Lu Zhi-Peng, Zhou Meng, Zhou Xiao-Yun, Tao Ying-Qi, Sun Peng, Zhang Jun-Tao, Zhang Ting-Bo. Effects of the doping of Al and O interstitial atoms on thermodynamic properties of -Al2O3:first-principles calculations. Acta Physica Sinica, 2017, 66(1): 016103. doi: 10.7498/aps.66.016103
    [8] Jiang Wen-Quan, Du Guang-Yu, Ba De-Chun, Yang Fan. Micro-mechanism of damping vibration attenuation on porous metal coating. Acta Physica Sinica, 2015, 64(14): 146801. doi: 10.7498/aps.64.146801
    [9] Rao Jian-Ping, Ouyang Chu-Ying, Lei Min-Sheng, Jiang Feng-Yi. First principles investigation of interaction between interstitials H atom and Nb metal. Acta Physica Sinica, 2012, 61(4): 047105. doi: 10.7498/aps.61.047105
    [10] Wu Xiao-Yi, Xiong Xiao-Min, Zhang Jin-Xiu. Torsion strain spectrum and its application to in phase transformation. Acta Physica Sinica, 2012, 61(1): 014601. doi: 10.7498/aps.61.014601
    [11] Wu Xiu-Sheng, Yang Chun-Li, Chen Zhi-Jun, Chen Chu-Sheng, Liu Wei. Low-frequency internal friction study of La1-xSrxFeO3-δ(0≤x≤2/3)system. Acta Physica Sinica, 2009, 58(9): 6419-6424. doi: 10.7498/aps.58.6419
    [12] Sun Wei, Wang Qing-Zhou, Han Fu-Sheng. The internal friction related to dislocation peak in a graphite particulate CuAlMn shape memory alloy composite. Acta Physica Sinica, 2007, 56(2): 1020-1026. doi: 10.7498/aps.56.1020
    [13] Peng Kai-Ping, Chen Wen-Zhe, Qian Kuang-Wu. Study of an anomalous serrated yielding phenomenon in 3004 aluminum alloy. Acta Physica Sinica, 2006, 55(7): 3569-3575. doi: 10.7498/aps.55.3569
    [14] Zhang Hua-Li, Liu Wei, Li Dong-Cai, Wu Xiu-Sheng, Chen Chu-Sheng. Phase separation in La2NiO4+δ studied by lowfrequency internal friction technique. Acta Physica Sinica, 2004, 53(11): 3834-3838. doi: 10.7498/aps.53.3834
    [15] Wang Qiang, Zhou Zheng-Cun, Han Fu-Sheng. The two internal friction peaks in rapidly cooled Fe71Al29 alloy*. Acta Physica Sinica, 2004, 53(11): 3829-3833. doi: 10.7498/aps.53.3829
    [16] Guo Li-Jun, Zhu Fang-Qiu, Zhu Zhen-Gang. . Acta Physica Sinica, 2002, 51(2): 300-303. doi: 10.7498/aps.51.300
    [17] LIANG YUN-FENG, SHUI JIA-PENG, CHEN GANG, ZHU ZHEN-GANG. INTERNAL FRICTION BEHAVIOUR OF THE SOLID-LIQUID TRANSITION IN THE Pb-Sn ALLOYS. Acta Physica Sinica, 2000, 49(7): 1327-1330. doi: 10.7498/aps.49.1327
    [18] 关于面心立方体金属中间隙原子内耗理论一文的更正. Acta Physica Sinica, 1961, 17(11): 53-54. doi: 10.7498/aps.17.53
    [19] 关于面心立方体合金中间隙原子内耗机构的探讨. Acta Physica Sinica, 1961, 17(11): 555-558. doi: 10.7498/aps.17.555
    [20] CHENG KAI-CHIA, CHANG SHEN-KWAI. THEORY OF INTERNAL FRICTION IN A FACE-CENTRED CUBIC LATTICE. Acta Physica Sinica, 1958, 14(1): 71-81. doi: 10.7498/aps.14.71
Metrics
  • Abstract views:  6832
  • PDF Downloads:  50
  • Cited By: 0
Publishing process
  • Received Date:  01 December 2018
  • Accepted Date:  07 February 2019
  • Available Online:  01 April 2019
  • Published Online:  20 April 2019

/

返回文章
返回