搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

烧结过程中Ni-Al金属间化合物形成的内耗

李育川 郝刚领 王金 王伟国 王新福 汪聃

引用本文:
Citation:

烧结过程中Ni-Al金属间化合物形成的内耗

李育川, 郝刚领, 王金, 王伟国, 王新福, 汪聃

Internal friction of Ni-Al intermetallic compound formation in sintering process

Li Yu-Chuan, Hao Gang-Ling, Wang Jin, Wang Wei-Guo, Wang Xin-Fu, Wang Dan
PDF
HTML
导出引用
  • Ni-Al金属间化合物是一类重要的高温结构材料, 在多种领域具有明确的目标需求. 粉末冶金技术是制备Ni-Al金属间化合物的一种重要选择. 探索烧结过程中Ni-Al金属间化合物形成和转变过程, 明确固相扩散反应发生温度和金属间化合物种类对调控烧结工艺和优化产品质量至关重要. 本文采用内耗技术系统研究了Ni-Al粉末混合物压坯烧结过程的内耗行为. 在内耗-温度谱上观察到一个显著内耗峰, 随测量频率的增大而降低, 但峰温无明显频率依赖性. 同时, 内耗峰随升温速率的增大向高温方向移动且峰值增加. 分析认为, 该峰与升温过程中金属间化合物NiAl3和Ni2Al3的形成有关, 属于典型的相变内耗峰. 此外, 机械球磨可调控Ni-Al粉末混合物的微观结构, 内耗峰随球磨时间增加向低温方向移动且峰值降低, 表明固相扩散反应可在低温区域以较低速率进行. 这与球磨过程中粉末颗粒的细化、粉末混合物的片层化、固溶度和表面能的提高以及缩短的原子扩散路径有关. 同时也表明机械球磨可有效降低固相扩散反应起始温度进而降低烧结温度.
    The Ni-Al intermetallic compounds, as important high-temperature structural materials, have clear target requirements in a number of fields. Powder metallurgy is an important candidate for preparing the Ni-Al intermetallic compounds. Clarifying the formation and transformation process of Ni-Al intermetallic compounds in sintering process and determining the solid diffusion reaction temperature and types of intermetallic compounds are greatly important for tailoring sintering process and optimizing product quality. In this paper, the internal friction behaviors of Ni-Al powder mixture compacts in the sintering process are systematically investigated by the internal friction technique. A typical internal friction peak is observed in the internal friction-temperature spectrum. The peak height decreases with the measuring frequency increasing, but the peak temperature is independent of frequency. Moreover, the internal friction peak shifts toward higher temperature and the peak height increases as the heating rate increases. It is reasonable that the internal friction peak belongs to the typical phase transformation internal friction peak which is associated with the formation of intermetallic compounds NiAl3 and Ni2Al3 in the heating process. Furthermore, the microstructure of the Ni-Al powder mixture can be tailored by mechanical ball-milling. The internal friction peak shifts toward lower temperature and the peak height decreases with the ball-milling time increasing, which indicates that the solid diffusion reaction can be activated at lower temperature with a slower reaction rate. This decrease is related to the refinement of powder particles, the lamellar formation of powder mixture, the enhancement of solid solution degree and surface energy, and the shortened atomic diffusion distance due to the mechanical ball-milling. It is also indicated that the mechanical ball-milling can effectively reduce the initial temperature of solid diffusion reaction, thus lowering sintering temperature.
      通信作者: 郝刚领, glhao@issp.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 52061038, 51661032, 51301150)、陕西省青年科技新星计划(批准号: 2013KJXX-11)和延安市工业攻关计划(批准号: 2016KG-02)资助的课题
      Corresponding author: Hao Gang-Ling, glhao@issp.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 52061038, 51661032, 51301150), the Special Program of Youth New-star of Science and Technology of Shaanxi Province, China (Grant No. 2013KJXX-11), and the Key Industrial Research Program of Yan’an Science and Technology Department, China (Grant No. 2016KG-02)
    [1]

    Camagu S T, Mathabathe N M, Motaung D E, Muller T F G, Arendse C J, Bolokang A S 2019 Vacuum 169 108919Google Scholar

    [2]

    Moshksar M M, Mirzaee M 2004 Intermetallics 12 1361Google Scholar

    [3]

    Mashreghi A, Moshksar M M 2009 J. Alloys Compd. 484 957Google Scholar

    [4]

    Chen T, Hampikia J M, Thadhani N N 1999 Acta Mater. 47 2567Google Scholar

    [5]

    Enayati M H, Karimzadeh F, Anvari S Z 2008 J. Mater. Process. Technol. 200 312Google Scholar

    [6]

    Mirale D B 1993 Acta Mater. 41 649Google Scholar

    [7]

    Chmielewski M, Nosewicz S, Pietrzak K, Rojek J, Strojny-Nedza A, Mackiewicz S, Dutkiewicz J 2014 J. Mater. Eng. Perform. 23 3875Google Scholar

    [8]

    Nuria C, Carlos R C L, Jose M G 2013 J. Mater. Res. Technol. 2 75Google Scholar

    [9]

    Movahedi B 2014 Adv. Powde. Technol. 25 871Google Scholar

    [10]

    Xiang Z D, Rose S R, Datta P K 2008 Scr. Mater. 59 99Google Scholar

    [11]

    Guo J T, Wang Z S, Sheng L Y, Zhou L Z, Yuan C, Chen Z G, Li Song 2012 Prog. Nat. Sci. 22 414Google Scholar

    [12]

    Hadjiafxenti A, Gunduz I E, Tsotsos C, Kyratsi T, Aouadi S M, Doumanidis C C, Rebholz C 2010 J. Alloys Compd. 505 467Google Scholar

    [13]

    Hadjiafxenti A, Gunduz I E, Kyratsi T, Doumanidis C C, Rebholz C 2013 Vacuum 96 73Google Scholar

    [14]

    Hao G L, Li Y C, Wang X F, Wang W G, Wang X F, Wang D, Li X Y 2020 Chin. Phys. Lett. 37 036102Google Scholar

    [15]

    Ivanov E, Grigorieva T, Golubkova G, Boldyrev V, Fasman A B, Mikailenko S D, Kalinina O T 1988 Mater. Lett. 7 51Google Scholar

    [16]

    Mchael A 1990 Phys. Rev. Lett. 64 487Google Scholar

    [17]

    Maric R, Ishihara K N, Shingu P H 1996 J. Mater. Sci. Lett. 15 1180Google Scholar

    [18]

    郝刚领, 许巧平, 李先雨, 王伟国 2019 物理学报 68 126101Google Scholar

    Hao G L, Xu Q P, Li X Y, Wang W G 2019 Acta Phys. Sin. 68 126101Google Scholar

    [19]

    Han F S, Zhu Z G and Gao J C 1999 Metall. Mater. Trans. A 30 771Google Scholar

    [20]

    Nowich A S, Berry B S, 1972 Anelastic Relaxation in Crystalline Solids (New York and London: Academic Press) p454

    [21]

    方前锋 1996 金属学报 32 565

    Fang Q F 1996 Acta Metall. Sin. 32 565

    [22]

    冯端 1999 金属物理学 (第三卷) (北京: 科学出版社) 第196−200页

    Feng D 1999 Metal Physics (Vol. 3) (Beijing: Science Press) pp196−200 (in Chinese)

    [23]

    王清周 2006 博士学位论文 (合肥: 中国科学院固体物理研究所)

    Wang Q Z 2006 Ph. D. Dissertation (Hefei: Institute of Solid State Physics Chinese Academy of Sciences) (in Chinese)

    [24]

    Zheng L Q, Fang Q F 2001 J. Phys. Condens. Matter 13 3411Google Scholar

    [25]

    Charlot F, Gaffet E, Zeghmati B, Bernard F, Niepce J C 1999 Mater. Sci. Eng., A 262 279Google Scholar

    [26]

    张宇文, 邓永和, 文大东, 赵鹤平, 高明 2020 物理学报 69 136601Google Scholar

    Zhang Y W, Deng Y H, Wen D D, Zhao H P, Gao M 2020 Acta Phys. Sin. 69 136601Google Scholar

    [27]

    Schwarz R B, Johnson W L 1983 Phys. Rev. Lett. 51 415Google Scholar

  • 图 1  球磨1 h后的Ni-Al粉末压坯IF和RDM与温度的关系

    Fig. 1.  IF and RDM as a function of temperature for the Ni-Al powder compact milled for 1 h.

    图 2  球磨1 h后的Ni-Al粉末压坯内耗峰与测量频率的依赖关系

    Fig. 2.  Dependence of internal friction peak on measuring frequency for the Ni-Al powder compact milled for 1 h.

    图 3  球磨1 h后的Ni-Al粉末压坯内耗峰与升温速率的依赖关系

    Fig. 3.  Dependence of internal friction peak on heating rate for the Ni-Al powder compact milled for 1 h.

    图 4  不同温度热处理的Ni-Al粉末压坯XRD图谱 (a) 492 ℃; (b) 556 ℃; (c) 675 ℃ (三个温度分别对应于内耗峰起始温度、峰值温度和结束温度)

    Fig. 4.  XRD patterns of Ni-Al powder compact milled for 1 h after heat treatment at different temperature: (a) 492 ℃; (b) 556 ℃; (c) 675 ℃ (three temperatures respectively corresponding to start temperature, peak temperature and end temperature of the internal friction peak).

    图 5  机械球磨对Ni-Al粉末压坯内耗峰的影响

    Fig. 5.  Dependence of mechanical ball-milling on internal friction peak for the Ni-Al powder compact.

    图 6  不同球磨时间的Ni-Al粉末混合物的XRD图谱 (a) 0 h; (b) 1 h; (c) 2 h; (d) 10 h; (e) 20 h

    Fig. 6.  XRD patterns of Ni-Al powder mixtures after ball-milling time for: (a) 0 h, (b) 1 h, (c) 2 h, (d) 10 h, (e) 20 h.

    图 7  不同球磨时间的Ni-Al粉末混合物的SEM图像(BSE模式) (a) 1 h; (b) 2 h; (c) 10 h; (d) 20 h

    Fig. 7.  SEM images (BSE mode) of Ni-Al powder mixtures after ball-milling time for: (a) 1 h, (b) 2 h, (c) 10 h, (d) 20 h.

    图 8  球磨时间不同的Ni-Al粉末压坯热处理后XRD图谱 (a) 0 h, 559 ℃; (b) 1 h, 556 ℃; (c) 2 h, 533 ℃; (d) 10 h, 483 ℃; (e) 20 h, 434 ℃(热处理温度对应于球磨时间不同的样品的内耗峰的峰温)

    Fig. 8.  XRD patterns of Ni-Al powder compact after heat treatment for the sample processing ball-milling for different time: (a) 0 h, 559 ℃; (b) 1 h, 556 ℃; (c) 2 h, 533 ℃; (d) 10 h, 483 ℃; (e) 20 h, 434 ℃ (the heat treatment temperatures corresponding to internal friction peak temperatures of ball-milled samples for different time).

    图 9  球磨时间不同的Ni-Al粉末压坯热处理后XRD图谱 (a) 0 h, 700 ℃; (b) 1 h, 675 ℃; (c) 2 h, 660 ℃; (d) 10 h, 625 ℃; (e) 20 h, 575 ℃ (热处理温度对应于球磨时间不同的样品的内耗峰的结束温度)

    Fig. 9.  XRD patterns of Ni-Al powder compact after heat treatment for the sample processing ball-milling for different time: (a) 0 h, 700 ℃; (b) 1 h, 675 ℃; (c) 2 h, 660 ℃; (d) 10 h, 625 ℃; (e) 20 h, 575 ℃ (the heat treatment temperatures corresponding to end temperature of internal friction peak of ball-milled samples for different time).

  • [1]

    Camagu S T, Mathabathe N M, Motaung D E, Muller T F G, Arendse C J, Bolokang A S 2019 Vacuum 169 108919Google Scholar

    [2]

    Moshksar M M, Mirzaee M 2004 Intermetallics 12 1361Google Scholar

    [3]

    Mashreghi A, Moshksar M M 2009 J. Alloys Compd. 484 957Google Scholar

    [4]

    Chen T, Hampikia J M, Thadhani N N 1999 Acta Mater. 47 2567Google Scholar

    [5]

    Enayati M H, Karimzadeh F, Anvari S Z 2008 J. Mater. Process. Technol. 200 312Google Scholar

    [6]

    Mirale D B 1993 Acta Mater. 41 649Google Scholar

    [7]

    Chmielewski M, Nosewicz S, Pietrzak K, Rojek J, Strojny-Nedza A, Mackiewicz S, Dutkiewicz J 2014 J. Mater. Eng. Perform. 23 3875Google Scholar

    [8]

    Nuria C, Carlos R C L, Jose M G 2013 J. Mater. Res. Technol. 2 75Google Scholar

    [9]

    Movahedi B 2014 Adv. Powde. Technol. 25 871Google Scholar

    [10]

    Xiang Z D, Rose S R, Datta P K 2008 Scr. Mater. 59 99Google Scholar

    [11]

    Guo J T, Wang Z S, Sheng L Y, Zhou L Z, Yuan C, Chen Z G, Li Song 2012 Prog. Nat. Sci. 22 414Google Scholar

    [12]

    Hadjiafxenti A, Gunduz I E, Tsotsos C, Kyratsi T, Aouadi S M, Doumanidis C C, Rebholz C 2010 J. Alloys Compd. 505 467Google Scholar

    [13]

    Hadjiafxenti A, Gunduz I E, Kyratsi T, Doumanidis C C, Rebholz C 2013 Vacuum 96 73Google Scholar

    [14]

    Hao G L, Li Y C, Wang X F, Wang W G, Wang X F, Wang D, Li X Y 2020 Chin. Phys. Lett. 37 036102Google Scholar

    [15]

    Ivanov E, Grigorieva T, Golubkova G, Boldyrev V, Fasman A B, Mikailenko S D, Kalinina O T 1988 Mater. Lett. 7 51Google Scholar

    [16]

    Mchael A 1990 Phys. Rev. Lett. 64 487Google Scholar

    [17]

    Maric R, Ishihara K N, Shingu P H 1996 J. Mater. Sci. Lett. 15 1180Google Scholar

    [18]

    郝刚领, 许巧平, 李先雨, 王伟国 2019 物理学报 68 126101Google Scholar

    Hao G L, Xu Q P, Li X Y, Wang W G 2019 Acta Phys. Sin. 68 126101Google Scholar

    [19]

    Han F S, Zhu Z G and Gao J C 1999 Metall. Mater. Trans. A 30 771Google Scholar

    [20]

    Nowich A S, Berry B S, 1972 Anelastic Relaxation in Crystalline Solids (New York and London: Academic Press) p454

    [21]

    方前锋 1996 金属学报 32 565

    Fang Q F 1996 Acta Metall. Sin. 32 565

    [22]

    冯端 1999 金属物理学 (第三卷) (北京: 科学出版社) 第196−200页

    Feng D 1999 Metal Physics (Vol. 3) (Beijing: Science Press) pp196−200 (in Chinese)

    [23]

    王清周 2006 博士学位论文 (合肥: 中国科学院固体物理研究所)

    Wang Q Z 2006 Ph. D. Dissertation (Hefei: Institute of Solid State Physics Chinese Academy of Sciences) (in Chinese)

    [24]

    Zheng L Q, Fang Q F 2001 J. Phys. Condens. Matter 13 3411Google Scholar

    [25]

    Charlot F, Gaffet E, Zeghmati B, Bernard F, Niepce J C 1999 Mater. Sci. Eng., A 262 279Google Scholar

    [26]

    张宇文, 邓永和, 文大东, 赵鹤平, 高明 2020 物理学报 69 136601Google Scholar

    Zhang Y W, Deng Y H, Wen D D, Zhao H P, Gao M 2020 Acta Phys. Sin. 69 136601Google Scholar

    [27]

    Schwarz R B, Johnson W L 1983 Phys. Rev. Lett. 51 415Google Scholar

  • [1] 吕笑梅, 黄凤珍, 朱劲松. 铁电材料中的电畴: 形成、结构、动性及相关性能. 物理学报, 2020, 69(12): 127704. doi: 10.7498/aps.69.20200312
    [2] 周正存, 杜洁, 朱晓斌, 严勇健, 王幸福. 烧结β型Ti-Nb合金中由间隙原子引起的Snoek弛豫. 物理学报, 2019, 68(8): 086201. doi: 10.7498/aps.68.20182120
    [3] 郝刚领, 许巧平, 李先雨, 王伟国. 金属粉末压坯烧结过程的内耗研究. 物理学报, 2019, 68(12): 126101. doi: 10.7498/aps.68.20190031
    [4] 马振宁, 蒋敏, 王磊. Mg-Y-Zn合金三元金属间化合物的电子结构及其相稳定性的第一性原理研究. 物理学报, 2015, 64(18): 187102. doi: 10.7498/aps.64.187102
    [5] 姜文全, 杜广煜, 巴德纯, 杨帆. 多孔金属薄膜阻尼减振微观机理研究. 物理学报, 2015, 64(14): 146801. doi: 10.7498/aps.64.146801
    [6] 唐志强, 齐砚勇, 易勇, 丁志杰. Ni基金属间化合物第一性原理研究. 物理学报, 2012, 61(6): 067501. doi: 10.7498/aps.61.067501
    [7] 吴筱毅, 熊小敏, 张进修. 扭转应变谱及其在相变研究中的应用. 物理学报, 2012, 61(1): 014601. doi: 10.7498/aps.61.014601
    [8] 吴修胜, 杨春利, 陈志军, 陈初升, 刘卫. La1-xSrxFeO3-δ(0≤x≤2/3)的低频内耗研究. 物理学报, 2009, 58(9): 6419-6424. doi: 10.7498/aps.58.6419
    [9] 孙 蔚, 王清周, 韩福生. 石墨颗粒/CuAlMn形状记忆合金复合材料中的位错内耗峰. 物理学报, 2007, 56(2): 1020-1026. doi: 10.7498/aps.56.1020
    [10] 刘玮书, 张波萍, 李敬锋, 刘 静. 机械合金化合成CoSb3过程中的固相反应机理的热力学解释. 物理学报, 2006, 55(1): 465-471. doi: 10.7498/aps.55.465
    [11] 彭开萍, 陈文哲, 钱匡武. 3004铝合金“反常”锯齿屈服现象的研究. 物理学报, 2006, 55(7): 3569-3575. doi: 10.7498/aps.55.3569
    [12] 白锁柱, 姚 斌, 郑大方, 邢国忠, 苏文辉. 新型BCN化合物的结构表征和相转变. 物理学报, 2006, 55(11): 5740-5744. doi: 10.7498/aps.55.5740
    [13] 张华力, 刘 卫, 李栋才, 吴修胜, 陈初升. La2NiO4+δ体系相分离现象的低频内耗研究. 物理学报, 2004, 53(11): 3834-3838. doi: 10.7498/aps.53.3834
    [14] 王 强, 周正存, 韩福生. 快冷Fe71Al29合金中的两个内耗峰. 物理学报, 2004, 53(11): 3829-3833. doi: 10.7498/aps.53.3829
    [15] 郭丽君, 祖方遒, 朱震刚. 以内耗技术探索Pb-Sn合金熔体的结构变化. 物理学报, 2002, 51(2): 300-303. doi: 10.7498/aps.51.300
    [16] 唐新峰, 陈立东, 後藤 孝, 平井敏雄, 袁润章. Skutterudite化合物FexCo4-xSb12的固相反应合成及热电特性. 物理学报, 2000, 49(6): 1120-1123. doi: 10.7498/aps.49.1120
    [17] 杨杭生, 吴国涛, 张孝彬, 陈小华, 卢筱楠, 王淼, 王春生, 何丕模, 徐铸德, 李文铸. 机械球磨对石墨结构的影响. 物理学报, 2000, 49(3): 522-526. doi: 10.7498/aps.49.522
    [18] 梁云峰, 水嘉鹏, 陈 刚, 朱震刚. Pb-Sn合金固—液转变过程的内耗行为. 物理学报, 2000, 49(7): 1327-1330. doi: 10.7498/aps.49.1327
    [19] 李晓光, 何怡贞. 金属玻璃Tg附近内耗理论分析. 物理学报, 1991, 40(4): 575-583. doi: 10.7498/aps.40.575
    [20] 葛庭燧, 杨本炜. 用内耗方法研究碳在γ-铁中的扩散. 物理学报, 1957, 13(5): 409-416. doi: 10.7498/aps.13.409
计量
  • 文章访问数:  5538
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-30
  • 修回日期:  2020-10-27
  • 上网日期:  2021-02-24
  • 刊出日期:  2021-03-05

/

返回文章
返回