Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Interfacial water and catalysis

Hu Jun Gao Yi

Citation:

Interfacial water and catalysis

Hu Jun, Gao Yi
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Catalysis of water, normally occurring at the interface, is crucial for the development of renewable energy and the environmental protection. Understanding the structures and chemical/physical properties of interfacial water during catalysis is of paramount importance for the sustainable development of human society, such as clean energy, wastewater treatment, and etc. However, owing to its complexity structure and mysterious property, the effect of water during catalysis is still an open question. The role of water during reactions, as reactant, catalyst, solvent, or both, has not been resolved. Recently, with the fast-development of in-situ experimental techniques and the computational capacity, the scientists started to investigate the behaviors of interfacial water using the real-time characterization and theoretical modeling at the atomic level, which provides the evidences and pictures to understand the effects of interfacial water. This paper will briefly introduce the current opportunities and challenges in studying the interfacial water, and the latest development and facing difficulty in experiment and theory, which will be beneficial for the future design of efficient catalysts for their applications in water.
    [1]

    Eizember T R 2010 EIA 2010 Energy Conference: Short-Term Stresses, Long-Term Change Washington, DC, USA, April 6-7, 2010

    [2]

    Malyshkina N, Niemeier D 2010 Environ. Sci. Technol. 44 9134

    [3]

    Sustainability and Energy 2007 Science 315 721

    [4]

    Whitesides G M, Crabtree G W 2007 Science 315 796

    [5]

    Satterfield C 1996 Heterogeneous Catalysis in Industrial Practice (2nd Ed.) (Malabar, FL: Krieger Publishing Company)

    [6]

    Kanan M W, Nocera D G 2008 Science 321 1072

    [7]

    Kudo A, Miseki Y 2009 Chem. Soc. Rev. 38 253

    [8]

    Meyer T J 2008 Nature 451 778

    [9]

    Daté M, Okumura M, Tsubota S, Haruta M 2004 Angew. Chem. Int. Ed. 43 2129

    [10]

    Bond G C, Thompson D T 2000 Gold Bull. 33 41

    [11]

    Gao Y, Zeng X C 2012 ACS Catalysis 2 2614

    [12]

    Cheng Y, Zheng G, Wei C, Mu Q, Zheng B, Wang Z, Gao M, Zhang Q, He K, Carmichael G 2016 Sci. Adv. 2 e1601530

    [13]

    Zhang L, Liu L, Zhao Y, Gong S, Zhang X, Henze D K, Capps S L, Fu T M, Zhang Q, Wang Y 2015 Environ. Res. Lett. 10 084011

    [14]

    Xue J, Yuan Z, Griffith S M, Yu X, Lau A K, Yu J Z 2016 Environ. Sci. Technol. 50 7325

    [15]

    Percastegui E G, Mosquera J, Nitschke J R 2017 Angew. Chem. Int. Ed. 56 9136

    [16]

    Egorova K S, Ananikov V P 2016 Angew. Chem. Int. Ed. 55 12150

    [17]

    Lee K M, Lai C W, Ngai K S, Juan J C 2016 Water. Res. 88 428

    [18]

    Varshney G, Kanel S R, Kempisty D M, Varshney V, Agrawal A, Sahle-Demessie E, Varma R S, Nadagouda M N 2016 Coord. Chem. Rev. 306 43

    [19]

    Qu Y, Duan X 2013 Chem. Soc. Rev. 422 568

    [20]

    Herrmann J M 1999 Catal. Today 53 115

    [21]

    Lasia A 2003 Handbook of Fuel Cells: Fundamentals, Technology and Applications (Vol. 2) (Chichester, UK: Wiley) p416

    [22]

    Primo A, Marino T, Corma T, Molinari R, Garcia H 2011 J. Am. Chem. Soc. 133 6930

    [23]

    Yang X Y, Wolcott A, Wang G M, Sobo A, Fitzmorris R C, Qian F, Zhang J Z, Li Y 2009 Nano Lett. 9 2331

    [24]

    Parkinson G S, Novotny Z, Jacobson P, Schmid M, Diebold U 2011 J. Am. Chem. Soc. 133 12650

    [25]

    Jaramillo T F, Jørgensen K P, Bonde J, Nielsen J H, Horch S, Chorkendorff L 2007 Science 317 100

    [26]

    Greeley J, Jaramillo T F, Bonde J, Chorkendorff I, Norskov J K 2006 Nature Mater. 5 909

    [27]

    Kaneko H, Miura T, Fuse A, Ishihara H, Taku S, Fukuzumi H, Naganuma Y, Tamaura Y 2007 Energy & Fuels 21 2287

    [28]

    Dinca M, Surendranath Y, Nocera D G 2010 Proc. Nat. Acad. Sci. U.S.A. 107 10337

    [29]

    Reece S Y, Hamel J A, Sung K, Jarvi T, Esswein A J, Pijpers J J H, Nocera D G 2011 Science 334 645

    [30]

    Subbaraman R, Tripkovic D, Strmcnik D, Chang K C, Uchimura M, Paulikas A P, Stamenkovic V, Markovic N M 2011 Science 334 1256

    [31]

    Esposito D V, Hunt S T, Kimmel Y C, Chen J G 2012 J. Am. Chem. Soc. 134 3025

    [32]

    Fu Q, Saltsburg H, Flytzani-Stephanopoulos M 2003 Science 301 935

    [33]

    Rodriguez J A, Ma S, Liu P, Hrbek J, Evans J, Pérez M 2007 Science 318 1757

    [34]

    Valdés Á, Brillet J, Grätzel M, Gudmundsdótir H, Hansen H A, Jónsson H, Klüpfel P, Kroes G J, Formal F L, Man I C, Martins R S, Nørskov J K, Rossmeisl J, Sivula K, Vojvodic A, Zäch M 2012 Phys. Chem. Chem. Phys. 14 49

    [35]

    Asadi M, Kim K, Liu C, Addepalli A V, Abbasi P, Yasaei P, Phillips P, Behranginia A, Cerrato J M, Haasch R, Zapol P, Kumar B, Klie R F, Abiade J, Curtiss L A, Salehi-Khojin A 2016 Science 353 467

    [36]

    Angamuthu R, Byers P, Lutz M, Spek A L, Bouwman E 2010 Science 327 313

    [37]

    Halmann M 1978 Nature 275 115

    [38]

    Kanan M W, Nocera D G 2008 Science 321 1072

    [39]

    Reece S Y, Hamel J A, Sung K, Jarvi T, Esswein A J, Pijpers J J H, Nocera D G 2011 Science 334 645

    [40]

    Liu C, Colón B C, Ziesack M, Silver P A, Nocera D G 2016 Science 352 1210

    [41]

    Niu K, Xu Y, Wang H, Ye R, Xin H L, Lin F, Tian C, Lum Y, Bustillo K C, Doeff M M, Koper M T M, Ager J, Xu R, Zheng H 2017 Sci. Adv. 3 e1700921

    [42]

    Zhang X, Qin J, Hao R, Wang L, Shen X, Yu R, Limpanart S, Ma M, Liu R 2015 J. Phys. Chem. C 119 20544

    [43]

    Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y 2001 Science 293 269

    [44]

    Etacheri V, Di Valentin C, Schneider J, Bahnemann D, Pillai S C 2015 J. Photochem. Photobiol. C 25 1

    [45]

    Di J, Xia J, Ji M, Wang B, Yin S, Zhang Q, Chen Z, Li H 2015 ACS Appl. Mater. Interfaces 7 20111

    [46]

    Jia X, Cao J, Lin H, Chen Y, Fu W, Chen S 2015 J. Mol. Catal. A: Chem. 409 94

    [47]

    Benjwal P, Kar K K 2015 J. Environ. Chem. Eng. 3 2076

    [48]

    Wang H, Dong S, Chang Y, Faria J L 2012 J. Hazard. Mater. 235 230

    [49]

    Hamid S B A, Das R, Ali M E 2014 Adv. Mater. Res. 925 48

    [50]

    Chen X, Liu L, Peter Y Y, Mao S S 2011 Science 331 746

    [51]

    Wang G, Wang H, Ling Y, Tang Y, Yang X, Fitzmorris R C, Wang C, Zhang J Z, Li Y 2011 Nano Lett. 11 3026

    [52]

    Li Y H, Cheng S W, Yuan C S, Lai T F, Hung C H 2018 Chemosphere 208 808

    [53]

    Cheng W, Quan X J, Li R H, Wu J, Zhao Q H 2018 Ozone Sci. Eng. 40 173

    [54]

    Liu Y H, Lin H, Dong Y B, Li B, Wang L, Chu S Y, Luo M K, Liu J F 2018 Chem. Eng. J. 347 669

    [55]

    Duca M, Koper M T M 2012 Energy Environ. Sci. 5 9726

    [56]

    Mott N F, Watts-Tobin R J 1961 Electrochim. Acta 4 79

    [57]

    Bockris J O’M, Habib M A 1975 J. Electroanal. Chem. 65 473

    [58]

    Bockris J O'M, Khan S U M 1993 Surface Electrochemistry (New York: Plenum Press) Ch. 2 and references therein

    [59]

    Bewick A, Kunimatsu K, Robinson J, Russell J W 1981 J. Electroanal. Chem. 276 175

    [60]

    Bewick A 1983 J. Electroanal. Chem. 150 481

    [61]

    Bewick A, Kunimatsu K 1980 Surface Sci. 101 131

    [62]

    Kunimatsu K, Bewick A 1986 Indian J. Tech. 24 407

    [63]

    Shingaya Y, Hirota K, Ogasawara H, Ito M 1986 J. Electroanal. Chem. 409 103

    [64]

    Ataka K, Yostuyanagi T, Osawa M 1996 J. Phys. Chem. 100 10664

    [65]

    Shen Y R 1989 Nature 337 519

    [66]

    Liu W T, Shen Y R 2014 Proc. Natl. Acad. Soc. U.S.A. 111 1293

    [67]

    Ding S Y, Yi J, Li J F, Ren B, Wu D Y, Panneerselvam R, Tian Z Q 2016 Nature Rev. Mater. 1 16021

    [68]

    Stöckle R M, Shu Y D, Deckert V, Zenobi R 2000 Chem. Phys. Lett. 318 131

    [69]

    Anderson M S 2000 Appl. Phys. Lett. 76 3130

    [70]

    Hayazawa N, Inouye Y, Sekkat Z, Kawata S 2000 Opt. Commun. 183 333

    [71]

    Pettinger B, Picardi G, Schuster R, Ertl G 2000 Electrochemistry 68 942

    [72]

    Li J F, Huang Y F, Ding Y, Yang Z L, Li S B, Zhou X S, Fan F R, Zhang W, Zhou Z Y, Wu D Y, Ren B, Wang Z L, Tian Z Q 2010 Nature 464 392

    [73]

    Shpigel N, Levi M D, Sigalov S, Girshevitz O, Aurbach D, Daikhin L, Pikma P, Marandi M, Jänes A, Lust E, Jäckel N, Presser V 2016 Nature Mater. 15 570

    [74]

    Bikondoa O, Pang C L, Ithnin R, Muryn C A, Onishi H, Thornton G 2006 Nature Mater. 5 189

    [75]

    Merte L R, Peng G W, Bechstein R, Rieboldt F, Farberow C A, Grabow L C, Kudernatsch W, Wendt S, Laegsgaard E, Mavrikakis M, Besenbacher F 2012 Science 336 889

    [76]

    Guo J, Meng X Z, Chen J, Peng J B, Sheng J M, Li X Z, Xu L M, Shi J R, Wang E G, Jiang Y 2014 Nature Mater. 13 184

    [77]

    Guo J, Lu J T, Feng Y X, Chen J, Peng J B, Lin Z R, Meng X Z, Wang Z C, Li X Z, Wang E G, Jiang Y 2016 Science 352 321

    [78]

    Peng J B, Cao D Y, He Z L, Guo J, Hapala P, Ma R Z, Cheng B W, Chen J, Xie W J, Li X Z, Jelinek P, Xu L M, Gao Y Q, Wang E G, Jiang Y 2018 Nature 557 701

    [79]

    Hansen P L, Wagner J B, Helveg S, Rostrup-Nielsen J R, Clausen B S, Topsoe H 2002 Science 295 2053

    [80]

    Nolte P, Stierle A, Jin-Phillipp N Y, Kasper N, Schulli T U, Dosch H 2008 Science 321 1654

    [81]

    Tao F, Dag S, Wang L W, Liu Z, Butcher D R, Bluhm H, Salmeron M, Somorjai G A 2010 Science 327 850

    [82]

    Tao F, Grass M E, Zhang Y, Butcher D R, Renzas J R, Liu Z, Chung J Y, Mun B S, Salmeron M, Somorjai G A 2008 Science 322 932

    [83]

    Zhang X, Meng J, Zhu B, Yuan W, Yang H, Zhang Z, Gao Y, Wang Y 2018 Chem. Comm. 54 8587

    [84]

    Zheng H M, Smith R K, Jun Y W, Kisielowski, C, Dahmen U, Alivisatos, A P 2009 Science 324 1309

    [85]

    Liao H G, Cui L K, Whitelam S, Zheng H M 2012 Science 336 1011

    [86]

    Liao H G, Zherebetskyy D, Xin H L, Czarnik C, Ercius P, Elmlund H, Pan M, Wang L W, Zheng H M 2014 Science 345 916

    [87]

    Mirsaidov U, Mokkapati V R S S, Bhattacharya D, Andersen H, Bosman M, Ozyilmaz B, Matsudaira P 2013 Lab Chip 13 2874

    [88]

    Smeets P J M, Cho K R, Kempen R G E, Sommerdijk N A J M, de Yoreo J J 2015 Nat. Mater. 14 394

    [89]

    Chee S W, Pratt S H, Hattar K, Duquette D, Ross F M, Hull R 2015 Chem. Comm. 51 168

    [90]

    Loh N D, Sen S, Bosman M, Tan S F, Zhong J, Nijhuis C A, Král P, Matsudaira P, Mirsaidov U 2017 Nature Chem. 9 77

    [91]

    Pham T A, Govoni M, Seidel R, Bradforth S E, Schwegler E, Galli G 2017 Sci. Adv. 3 e1603210

    [92]

    Zeng Z H, Chang K C, Kubal J, Markovic N M, Greeley J 2017 Nature Energy 2 17070

    [93]

    Luo L L, Su M, Yan P F, Zou L F, Schreiber D K, Baer D R, Zhu Z H, Zhou G W, Wang Y T, Bruemmer S M, Xu Z J, Wang C M 2018 Nature Mater. 17 514

    [94]

    Tuckerman M, Laasonen K, Sprik M, Parrinello M 1995 J. Chem. Phys. 103 150

    [95]

    Marx D, Tuckerman M E, Hutter J, Parrinello M 1999 Nature 397 601

    [96]

    Vittadini A, Selloni A, Rotzinger F P, Gratzel M 1998 Phys. Rev. Lett. 81 2954

    [97]

    Meng S, Xu L F, Wang E G, Gao S W 2002 Phys. Rev. Lett. 89 176104

    [98]

    Wang C L, Lu H J, Wang Z G, Xiu P, Zhou B, Zuo G H, Wang R Z, Hu J Z, Fang H P 2009 Phys. Rev. Lett. 103 137801

    [99]

    Guo P, Tu Y S, Yang J R, Wang C L, Sheng N, Fang H P 2015 Phys. Rev. Lett. 115 186101

    [100]

    Zhu B, Xu Z, Wang C L, Gao Y 2016 Nano Lett. 16 2628.

    [101]

    Duan M, Yu J, Meng J, Zhu B, Wang Y, Gao Y 2018 Angew. Chem. Int. Ed. 57 6464

    [102]

    Lohse D, Zhang X H 2015 Rev. Mod. Phys. 87 981

    [103]

    Smith W, Lam R K, Shih O, Rizzuto A M, Prendergast D, Saykally R J 2015 J. Chem. Phys. 143 084503

  • [1]

    Eizember T R 2010 EIA 2010 Energy Conference: Short-Term Stresses, Long-Term Change Washington, DC, USA, April 6-7, 2010

    [2]

    Malyshkina N, Niemeier D 2010 Environ. Sci. Technol. 44 9134

    [3]

    Sustainability and Energy 2007 Science 315 721

    [4]

    Whitesides G M, Crabtree G W 2007 Science 315 796

    [5]

    Satterfield C 1996 Heterogeneous Catalysis in Industrial Practice (2nd Ed.) (Malabar, FL: Krieger Publishing Company)

    [6]

    Kanan M W, Nocera D G 2008 Science 321 1072

    [7]

    Kudo A, Miseki Y 2009 Chem. Soc. Rev. 38 253

    [8]

    Meyer T J 2008 Nature 451 778

    [9]

    Daté M, Okumura M, Tsubota S, Haruta M 2004 Angew. Chem. Int. Ed. 43 2129

    [10]

    Bond G C, Thompson D T 2000 Gold Bull. 33 41

    [11]

    Gao Y, Zeng X C 2012 ACS Catalysis 2 2614

    [12]

    Cheng Y, Zheng G, Wei C, Mu Q, Zheng B, Wang Z, Gao M, Zhang Q, He K, Carmichael G 2016 Sci. Adv. 2 e1601530

    [13]

    Zhang L, Liu L, Zhao Y, Gong S, Zhang X, Henze D K, Capps S L, Fu T M, Zhang Q, Wang Y 2015 Environ. Res. Lett. 10 084011

    [14]

    Xue J, Yuan Z, Griffith S M, Yu X, Lau A K, Yu J Z 2016 Environ. Sci. Technol. 50 7325

    [15]

    Percastegui E G, Mosquera J, Nitschke J R 2017 Angew. Chem. Int. Ed. 56 9136

    [16]

    Egorova K S, Ananikov V P 2016 Angew. Chem. Int. Ed. 55 12150

    [17]

    Lee K M, Lai C W, Ngai K S, Juan J C 2016 Water. Res. 88 428

    [18]

    Varshney G, Kanel S R, Kempisty D M, Varshney V, Agrawal A, Sahle-Demessie E, Varma R S, Nadagouda M N 2016 Coord. Chem. Rev. 306 43

    [19]

    Qu Y, Duan X 2013 Chem. Soc. Rev. 422 568

    [20]

    Herrmann J M 1999 Catal. Today 53 115

    [21]

    Lasia A 2003 Handbook of Fuel Cells: Fundamentals, Technology and Applications (Vol. 2) (Chichester, UK: Wiley) p416

    [22]

    Primo A, Marino T, Corma T, Molinari R, Garcia H 2011 J. Am. Chem. Soc. 133 6930

    [23]

    Yang X Y, Wolcott A, Wang G M, Sobo A, Fitzmorris R C, Qian F, Zhang J Z, Li Y 2009 Nano Lett. 9 2331

    [24]

    Parkinson G S, Novotny Z, Jacobson P, Schmid M, Diebold U 2011 J. Am. Chem. Soc. 133 12650

    [25]

    Jaramillo T F, Jørgensen K P, Bonde J, Nielsen J H, Horch S, Chorkendorff L 2007 Science 317 100

    [26]

    Greeley J, Jaramillo T F, Bonde J, Chorkendorff I, Norskov J K 2006 Nature Mater. 5 909

    [27]

    Kaneko H, Miura T, Fuse A, Ishihara H, Taku S, Fukuzumi H, Naganuma Y, Tamaura Y 2007 Energy & Fuels 21 2287

    [28]

    Dinca M, Surendranath Y, Nocera D G 2010 Proc. Nat. Acad. Sci. U.S.A. 107 10337

    [29]

    Reece S Y, Hamel J A, Sung K, Jarvi T, Esswein A J, Pijpers J J H, Nocera D G 2011 Science 334 645

    [30]

    Subbaraman R, Tripkovic D, Strmcnik D, Chang K C, Uchimura M, Paulikas A P, Stamenkovic V, Markovic N M 2011 Science 334 1256

    [31]

    Esposito D V, Hunt S T, Kimmel Y C, Chen J G 2012 J. Am. Chem. Soc. 134 3025

    [32]

    Fu Q, Saltsburg H, Flytzani-Stephanopoulos M 2003 Science 301 935

    [33]

    Rodriguez J A, Ma S, Liu P, Hrbek J, Evans J, Pérez M 2007 Science 318 1757

    [34]

    Valdés Á, Brillet J, Grätzel M, Gudmundsdótir H, Hansen H A, Jónsson H, Klüpfel P, Kroes G J, Formal F L, Man I C, Martins R S, Nørskov J K, Rossmeisl J, Sivula K, Vojvodic A, Zäch M 2012 Phys. Chem. Chem. Phys. 14 49

    [35]

    Asadi M, Kim K, Liu C, Addepalli A V, Abbasi P, Yasaei P, Phillips P, Behranginia A, Cerrato J M, Haasch R, Zapol P, Kumar B, Klie R F, Abiade J, Curtiss L A, Salehi-Khojin A 2016 Science 353 467

    [36]

    Angamuthu R, Byers P, Lutz M, Spek A L, Bouwman E 2010 Science 327 313

    [37]

    Halmann M 1978 Nature 275 115

    [38]

    Kanan M W, Nocera D G 2008 Science 321 1072

    [39]

    Reece S Y, Hamel J A, Sung K, Jarvi T, Esswein A J, Pijpers J J H, Nocera D G 2011 Science 334 645

    [40]

    Liu C, Colón B C, Ziesack M, Silver P A, Nocera D G 2016 Science 352 1210

    [41]

    Niu K, Xu Y, Wang H, Ye R, Xin H L, Lin F, Tian C, Lum Y, Bustillo K C, Doeff M M, Koper M T M, Ager J, Xu R, Zheng H 2017 Sci. Adv. 3 e1700921

    [42]

    Zhang X, Qin J, Hao R, Wang L, Shen X, Yu R, Limpanart S, Ma M, Liu R 2015 J. Phys. Chem. C 119 20544

    [43]

    Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y 2001 Science 293 269

    [44]

    Etacheri V, Di Valentin C, Schneider J, Bahnemann D, Pillai S C 2015 J. Photochem. Photobiol. C 25 1

    [45]

    Di J, Xia J, Ji M, Wang B, Yin S, Zhang Q, Chen Z, Li H 2015 ACS Appl. Mater. Interfaces 7 20111

    [46]

    Jia X, Cao J, Lin H, Chen Y, Fu W, Chen S 2015 J. Mol. Catal. A: Chem. 409 94

    [47]

    Benjwal P, Kar K K 2015 J. Environ. Chem. Eng. 3 2076

    [48]

    Wang H, Dong S, Chang Y, Faria J L 2012 J. Hazard. Mater. 235 230

    [49]

    Hamid S B A, Das R, Ali M E 2014 Adv. Mater. Res. 925 48

    [50]

    Chen X, Liu L, Peter Y Y, Mao S S 2011 Science 331 746

    [51]

    Wang G, Wang H, Ling Y, Tang Y, Yang X, Fitzmorris R C, Wang C, Zhang J Z, Li Y 2011 Nano Lett. 11 3026

    [52]

    Li Y H, Cheng S W, Yuan C S, Lai T F, Hung C H 2018 Chemosphere 208 808

    [53]

    Cheng W, Quan X J, Li R H, Wu J, Zhao Q H 2018 Ozone Sci. Eng. 40 173

    [54]

    Liu Y H, Lin H, Dong Y B, Li B, Wang L, Chu S Y, Luo M K, Liu J F 2018 Chem. Eng. J. 347 669

    [55]

    Duca M, Koper M T M 2012 Energy Environ. Sci. 5 9726

    [56]

    Mott N F, Watts-Tobin R J 1961 Electrochim. Acta 4 79

    [57]

    Bockris J O’M, Habib M A 1975 J. Electroanal. Chem. 65 473

    [58]

    Bockris J O'M, Khan S U M 1993 Surface Electrochemistry (New York: Plenum Press) Ch. 2 and references therein

    [59]

    Bewick A, Kunimatsu K, Robinson J, Russell J W 1981 J. Electroanal. Chem. 276 175

    [60]

    Bewick A 1983 J. Electroanal. Chem. 150 481

    [61]

    Bewick A, Kunimatsu K 1980 Surface Sci. 101 131

    [62]

    Kunimatsu K, Bewick A 1986 Indian J. Tech. 24 407

    [63]

    Shingaya Y, Hirota K, Ogasawara H, Ito M 1986 J. Electroanal. Chem. 409 103

    [64]

    Ataka K, Yostuyanagi T, Osawa M 1996 J. Phys. Chem. 100 10664

    [65]

    Shen Y R 1989 Nature 337 519

    [66]

    Liu W T, Shen Y R 2014 Proc. Natl. Acad. Soc. U.S.A. 111 1293

    [67]

    Ding S Y, Yi J, Li J F, Ren B, Wu D Y, Panneerselvam R, Tian Z Q 2016 Nature Rev. Mater. 1 16021

    [68]

    Stöckle R M, Shu Y D, Deckert V, Zenobi R 2000 Chem. Phys. Lett. 318 131

    [69]

    Anderson M S 2000 Appl. Phys. Lett. 76 3130

    [70]

    Hayazawa N, Inouye Y, Sekkat Z, Kawata S 2000 Opt. Commun. 183 333

    [71]

    Pettinger B, Picardi G, Schuster R, Ertl G 2000 Electrochemistry 68 942

    [72]

    Li J F, Huang Y F, Ding Y, Yang Z L, Li S B, Zhou X S, Fan F R, Zhang W, Zhou Z Y, Wu D Y, Ren B, Wang Z L, Tian Z Q 2010 Nature 464 392

    [73]

    Shpigel N, Levi M D, Sigalov S, Girshevitz O, Aurbach D, Daikhin L, Pikma P, Marandi M, Jänes A, Lust E, Jäckel N, Presser V 2016 Nature Mater. 15 570

    [74]

    Bikondoa O, Pang C L, Ithnin R, Muryn C A, Onishi H, Thornton G 2006 Nature Mater. 5 189

    [75]

    Merte L R, Peng G W, Bechstein R, Rieboldt F, Farberow C A, Grabow L C, Kudernatsch W, Wendt S, Laegsgaard E, Mavrikakis M, Besenbacher F 2012 Science 336 889

    [76]

    Guo J, Meng X Z, Chen J, Peng J B, Sheng J M, Li X Z, Xu L M, Shi J R, Wang E G, Jiang Y 2014 Nature Mater. 13 184

    [77]

    Guo J, Lu J T, Feng Y X, Chen J, Peng J B, Lin Z R, Meng X Z, Wang Z C, Li X Z, Wang E G, Jiang Y 2016 Science 352 321

    [78]

    Peng J B, Cao D Y, He Z L, Guo J, Hapala P, Ma R Z, Cheng B W, Chen J, Xie W J, Li X Z, Jelinek P, Xu L M, Gao Y Q, Wang E G, Jiang Y 2018 Nature 557 701

    [79]

    Hansen P L, Wagner J B, Helveg S, Rostrup-Nielsen J R, Clausen B S, Topsoe H 2002 Science 295 2053

    [80]

    Nolte P, Stierle A, Jin-Phillipp N Y, Kasper N, Schulli T U, Dosch H 2008 Science 321 1654

    [81]

    Tao F, Dag S, Wang L W, Liu Z, Butcher D R, Bluhm H, Salmeron M, Somorjai G A 2010 Science 327 850

    [82]

    Tao F, Grass M E, Zhang Y, Butcher D R, Renzas J R, Liu Z, Chung J Y, Mun B S, Salmeron M, Somorjai G A 2008 Science 322 932

    [83]

    Zhang X, Meng J, Zhu B, Yuan W, Yang H, Zhang Z, Gao Y, Wang Y 2018 Chem. Comm. 54 8587

    [84]

    Zheng H M, Smith R K, Jun Y W, Kisielowski, C, Dahmen U, Alivisatos, A P 2009 Science 324 1309

    [85]

    Liao H G, Cui L K, Whitelam S, Zheng H M 2012 Science 336 1011

    [86]

    Liao H G, Zherebetskyy D, Xin H L, Czarnik C, Ercius P, Elmlund H, Pan M, Wang L W, Zheng H M 2014 Science 345 916

    [87]

    Mirsaidov U, Mokkapati V R S S, Bhattacharya D, Andersen H, Bosman M, Ozyilmaz B, Matsudaira P 2013 Lab Chip 13 2874

    [88]

    Smeets P J M, Cho K R, Kempen R G E, Sommerdijk N A J M, de Yoreo J J 2015 Nat. Mater. 14 394

    [89]

    Chee S W, Pratt S H, Hattar K, Duquette D, Ross F M, Hull R 2015 Chem. Comm. 51 168

    [90]

    Loh N D, Sen S, Bosman M, Tan S F, Zhong J, Nijhuis C A, Král P, Matsudaira P, Mirsaidov U 2017 Nature Chem. 9 77

    [91]

    Pham T A, Govoni M, Seidel R, Bradforth S E, Schwegler E, Galli G 2017 Sci. Adv. 3 e1603210

    [92]

    Zeng Z H, Chang K C, Kubal J, Markovic N M, Greeley J 2017 Nature Energy 2 17070

    [93]

    Luo L L, Su M, Yan P F, Zou L F, Schreiber D K, Baer D R, Zhu Z H, Zhou G W, Wang Y T, Bruemmer S M, Xu Z J, Wang C M 2018 Nature Mater. 17 514

    [94]

    Tuckerman M, Laasonen K, Sprik M, Parrinello M 1995 J. Chem. Phys. 103 150

    [95]

    Marx D, Tuckerman M E, Hutter J, Parrinello M 1999 Nature 397 601

    [96]

    Vittadini A, Selloni A, Rotzinger F P, Gratzel M 1998 Phys. Rev. Lett. 81 2954

    [97]

    Meng S, Xu L F, Wang E G, Gao S W 2002 Phys. Rev. Lett. 89 176104

    [98]

    Wang C L, Lu H J, Wang Z G, Xiu P, Zhou B, Zuo G H, Wang R Z, Hu J Z, Fang H P 2009 Phys. Rev. Lett. 103 137801

    [99]

    Guo P, Tu Y S, Yang J R, Wang C L, Sheng N, Fang H P 2015 Phys. Rev. Lett. 115 186101

    [100]

    Zhu B, Xu Z, Wang C L, Gao Y 2016 Nano Lett. 16 2628.

    [101]

    Duan M, Yu J, Meng J, Zhu B, Wang Y, Gao Y 2018 Angew. Chem. Int. Ed. 57 6464

    [102]

    Lohse D, Zhang X H 2015 Rev. Mod. Phys. 87 981

    [103]

    Smith W, Lam R K, Shih O, Rizzuto A M, Prendergast D, Saykally R J 2015 J. Chem. Phys. 143 084503

  • [1] Li Qiu-Hong, Ma Xiao-Xue, Pan Jing. Effect of substitution doping and surface adsorption of Al atoms on photocatalytic decomposition of water and oxygen from BiVO4 (010) crystal surface. Acta Physica Sinica, 2023, 72(2): 027101. doi: 10.7498/aps.72.20221842
    [2] Zhao Wen-Qi, Zhang Dai, Cui Ming-Hui, Du Ying, Zhang Shu-Yu, Ou Qiong-Rong. Graphene modification based on plasma technologies. Acta Physica Sinica, 2021, 70(9): 095208. doi: 10.7498/aps.70.20202078
    [3] Wang Dan, Qiu Rong, Chen Bo, Bao Nan-Yun, Kang Dong-Dong, Dai Jia-Yu. Electronic and optical properties of two-dimensional ice I. Acta Physica Sinica, 2021, 70(13): 133101. doi: 10.7498/aps.70.20210708
    [4] You Si-Fan,  Sun Lu-Ye,  Guo Jing,  Qiu Xiao-Hui,  Jiang Ying. Recent advances in probing surface/interfacial water by scanning probe microscopy. Acta Physica Sinica, 2019, 68(1): 016802. doi: 10.7498/aps.68.20182201
    [5] Lin Qi-Min, Zhang Xia, Lu Qi-Chao, Luo Yan-Bin, Cui Jian-Gong, Yan Xin, Ren Xiao-Min, Huang Xue. First-principles study on structural stability of graphene oxide and catalytic activity of nitric acid. Acta Physica Sinica, 2019, 68(24): 247302. doi: 10.7498/aps.68.20191304
    [6] Zhan Xia, Joe Kelleher, Gao Jian-Bo, Ma Yan-Ling, Chu Ming-Qiang, Zhang Shu-Yan, Zhang Peng, Sanjooram Paddea, Gong Zhi-Feng, Hou Xiao-Dong. High temperature sample environment upgrade of ISIS engineering materials in-situ diffraction experiment. Acta Physica Sinica, 2019, 68(13): 132901. doi: 10.7498/aps.68.20182295
    [7] Shao Zi-Qiao, Bi Heng-Chang, Xie Xiao, Wan Neng, Sun Li-Tao. Photocatalytic activity of tungsten trioxide/silver oxide composite under visible light irradiation for methylene blue degradation. Acta Physica Sinica, 2018, 67(16): 167802. doi: 10.7498/aps.67.20180663
    [8] Niu Shu-Tong, Pan Peng, Zhu Bing-Hui, Song Han-Yu, Jin Yi-Lei, Yu Lou-Fei, Han Cheng-Zhi, Shao Jian-Xiong, Chen Xi-Meng. Experimental and theoritical research on the dynamical transmission of 30 keV H+ ions through polycarbonate nanocapillaries. Acta Physica Sinica, 2018, 67(20): 203401. doi: 10.7498/aps.67.20181062
    [9] He Rui-Xia, Liu Bo-Fei, Liang Jun-Hui, Gao Hai-Bo, Wang Ning, Zhang Qi-Xing, Zhang De-Kun, Wei Chang-Chun, Xu Sheng-Zhi, Wang Guang-Cai, Zhao Ying, Zhang Xiao-Dan. Sauna-like process prepared periodic molybdenum metal catalytic electrodes and their applications in water reduction. Acta Physica Sinica, 2016, 65(4): 048801. doi: 10.7498/aps.65.048801
    [10] Fang Hai-Ping. Interfacial water at microscopic level: from quasi-one-dimensional, two-dimensional confined space, to biomolecules surfaces and material surfaces. Acta Physica Sinica, 2016, 65(18): 186101. doi: 10.7498/aps.65.186101
    [11] Wang Ming, Duan Fang-Li. Effect of interfacial hydrogen bonds on the structure and dynamics of confined water. Acta Physica Sinica, 2015, 64(21): 218201. doi: 10.7498/aps.64.218201
    [12] Yang Qing-Ling, Tan Yik-Yee, Wu Xing, Sim Kok Swee, Sun Li-Tao. In-situ investigation on the growth of Cu-Al intermetallic compounds in Cu wire bonding. Acta Physica Sinica, 2015, 64(21): 216804. doi: 10.7498/aps.64.216804
    [13] Xue Bin, Wang Hong-Yang, Qin Meng, Cao Yi, Wang Wei. A photocatalysis system based on composite nanostructures of controlable peptide nanotubes and graphene. Acta Physica Sinica, 2015, 64(9): 098702. doi: 10.7498/aps.64.098702
    [14] Cui Jian-Gong, Zhang Xia, Yan Xin, Li Jun-Shuai, Huang Yong-Qing, Ren Xiao-Min. Selective-area growth of GaAs and GaAs/InxGa1-xAs/GaAs nanowires by MOCVD. Acta Physica Sinica, 2014, 63(13): 136103. doi: 10.7498/aps.63.136103
    [15] Li Zong-Bao, Wang Xia, Fan Shuai-Wei. Research of the synergistic effects in Cu/N co-doped TiO2 surface:A DFT calculation. Acta Physica Sinica, 2014, 63(15): 157102. doi: 10.7498/aps.63.157102
    [16] Wang Jun-Guo, Liu Fu-Sheng, Li Yong-Hong, Zhang Ming-Jian, Zhang Ning-Chao, Xue Xue-Dong. The structural transition of water at quartz/water interfaces under shock compression in phase region of liquid. Acta Physica Sinica, 2012, 61(19): 196201. doi: 10.7498/aps.61.196201
    [17] Zhao Yi-Dong, Cui Ming-Qi, Zheng Lei, Han Yong, Zhou Ke-Jin, Ma Chen-Yan, Shang Wan-Li, Zhu Tuo, Xiong Gang, Zhao Yang, Zhang Wen-Hai, Yi Rong-Qing, Kuang Long-Yu, Cao Lei-Feng, Gao Yu-Lin, Yang Jia-Min. Experimental calibration of transmission grating and theoretical calculation of diffraction efficiency. Acta Physica Sinica, 2011, 60(3): 034216. doi: 10.7498/aps.60.034216
    [18] Gao Tao, Zhou Jing-Jing, Chen Yun-Gui, Wu Chao-Ling, Xiao Yan. Spatial configurations and X-ray absorption of Ti catalyzing on NaAlH4 surfaces: Car-Parrinello molecular dynamics and density functional theory study. Acta Physica Sinica, 2010, 59(10): 7452-7457. doi: 10.7498/aps.59.7452
    [19] Tian Hui-Juan, Liu Ying, Wang Li-Jun, Zhang Zhi-Bo, Xiao Li-Feng. Study of diffuse reflectance based on a hybrid diffusion approximation and simulating experiment. Acta Physica Sinica, 2009, 58(1): 243-249. doi: 10.7498/aps.58.243
    [20] Qiao Xiu-Mei, Zhang Guo-Ping, Zhang Tan-Xin. Modeling RAL experiment to test our simulation. Acta Physica Sinica, 2006, 55(3): 1181-1185. doi: 10.7498/aps.55.1181
Metrics
  • Abstract views:  9027
  • PDF Downloads:  252
  • Cited By: 0
Publishing process
  • Received Date:  11 December 2018
  • Accepted Date:  29 December 2018
  • Published Online:  05 January 2019

/

返回文章
返回