-
Since its first experimental demonstration in 1995, ghost imaging has attracted a great deal of attention due to its potential applications. In Yanhua Shih’s paper (Meyers R E, Deacon K S, Shih Y H 2011 Appl. Phys. Lett. 98 111115; Meyers R E, Deacon K S, Shih Y H 2012 Appl. Phys. Lett. 100 131114), he pointed out that " one of the useful features is the turbulence insensitivity of thermal light ghost imaging, i.e., atmospheric turbulence would not have any influence on the ghost images of sunlight”. However, in Jeffrey H. Shapiro’s view (Shapiro J H 2012 arXiv:1201.4513 [quant-ph]), lens-less pseudo-thermal ghost imaging is not immune to spatial resolution loss from the presence of atmospheric turbulence along the propagation paths, unless the source diameter is less than the source-plane turbulence coherence length. In the present paper, we find that the second order self-correlation of sunlight intensity is the case that can be satisfied with both theories of Shih and Shapiro. In this paper, the second order self-correlation of sunlight intensity (the intensity variance of the images acquired by the CCD camera), rather than the total intensity correlation between images and bucket detector signals (the traditional ghost imaging method), is calculated to recover the high-quality images in turbulent atmosphere under a few hundred measurements. Inspired by Boyd’s paper, titled " thermal ghost imaging with averaged speckle patterns” (Zerom P, Shi Z, O’Sullivan M N, Chan K W C, Krogstad M, Shapiro J H, Boyd R W 2012 Phys. Rev. A 86 063817), turbulence insensitivity of sunlight ghost imaging is demonstrated both theoretically and experimentally in this article. It is found that thermal ghost imaging system whose coherence time need not to be controlled to match the speed of the detectors, ghost imaging with sunlight, which has always been considered intriguing and highly desirable, now is realizable. We present theoretical and experimental results showing that a sunlight self-correlation ghost imaging system can produce high-quality images even when it uses an slow detector and passes through the turbulence near ground, as long as the signal variation is predominantly caused by the fluctuation of the sunlight intensity rather than other noise sources. Our scheme can also be used to improve the image quality in other wave bands such as infrared and ultraviolet, in the case where an poor image quality results from the turbulence or other random disturbances on the wavefront.
-
Keywords:
- self-correlation /
- ghost imaging /
- turbulent atmosphere
[1] Cheng J 2009 Opt. Express 17 7916Google Scholar
[2] Li C, Wang T, Pu J, Zhu W, Rao R 2010 Appl. Phys. B 99 599Google Scholar
[3] Zhang P L, Gong W L, Han S S 2010 Phys. Rev. A 82 033817Google Scholar
[4] Meyers R E, Deacon K S, Shih Y H 2011 Appl. Phys. Lett. 98 111115Google Scholar
[5] Meyers R E, Deacon K S, Shih Y H 2012 Appl. Phys. Lett. 100 131114Google Scholar
[6] Shapiro J H 2012 arXiv:1201.4513 [quant-ph]
[7] Gong W L, Han S S 2009 arXiv:0911.4750[quant-ph]
[8] Chen M L, Li E R, Gong W L, Xu X Y, Zhao C Q, Shen X, Xu W D, Han S S 2013 Opt. Photon. J. 3 83Google Scholar
[9] Wang C L, Mei X, Pan L, Wang P, Li W, Gao X, Bo Z, Chen M L, Gong W, Han S S 2018 Remote Sens. 10 732Google Scholar
[10] Zerom P, Shi Z, O’Sullivan M N, Chan K W C, Krogstad M, Shapiro J H, Robert W, Boyd 2012 Phys. Rev. A 86 063817Google Scholar
[11] 顾德曼 J W 著 (陈家璧, 秦克诚, 曹其智 译) 2018 统计光学(第二版) (科学出版社) 第326页
Goodman J W (translated by Chen J B, Qing K C, Cao Q Z) 2000 Statistical Optics (2nd Ed.) (Beijing: Science Press) p326 (in Chinese)
[12] 陈玉良 1991 广播与电视技术 1 30
Chen Y L 1991 Radio TV Broadcast Eng. 1 30
[13] 翁宁泉, 曾宗泳, 肖黎明, 马成胜, 龚知本 1999 强激光与粒子束 11 673
Weng N Q, Zeng Z Y, Xiao L M, Ma C S, Gong Z B 1999 High Power Laser and Particle Beams 11 673
[14] Smith T A, Shih Y 2018 Phys. Rev. Lett. 120 063606Google Scholar
[15] Baykal Y, Plonus M A 1983 J. Opt. Soc. Am. 73 831Google Scholar
[16] Baykal Y, Plonus M A 1985 J. Opt. Soc. Am. A 2 2124Google Scholar
[17] 李明飞, 莫小范, 张安宁 2016 导航与控制 5 1Google Scholar
Li M F, Mo X F, Zhang A N 2016 Navigtion and Control 5 1Google Scholar
[18] 李明飞, 莫小范, 赵连洁, 霍娟, 杨然, 李凯, 张安宁 2015 物理学报 65 064201Google Scholar
Li M F, Mo X F, Zhao L J, Huo J, Yang R, Li K, Zhang A N 2015 Acta Phys. Sin. 65 064201Google Scholar
[19] Welsh S S, Edgar M P, Bowman R, Jonathan P, Sun B Q, Padgett M J 2013 Opt. Express 21 23068Google Scholar
[20] Huynh-Thu Q, Ghanbari M 2008 Electron. Lett. 44 800Google Scholar
[21] Li D, Mersereau R M, Simske S 2007 IEEE Geosci. Remote Sens. Lett. 4 340Google Scholar
-
图 2 目标物体(成像目标: 北京中央广播电视塔, 200 m附近拍摄图像, 放大区域为成像区域; 在数字地图GPS定位下目标与实验地点距离
$L=L_{2}=17.2\ \rm{km}$ )Figure 2. Target photo is taken from about 200 m. The object is the Beijing Central Radio and TV Tower with the distance from our experimental location is about L =
$L_{2}=17.2\ \rm{km}$ measured by GPS in digital map. -
[1] Cheng J 2009 Opt. Express 17 7916Google Scholar
[2] Li C, Wang T, Pu J, Zhu W, Rao R 2010 Appl. Phys. B 99 599Google Scholar
[3] Zhang P L, Gong W L, Han S S 2010 Phys. Rev. A 82 033817Google Scholar
[4] Meyers R E, Deacon K S, Shih Y H 2011 Appl. Phys. Lett. 98 111115Google Scholar
[5] Meyers R E, Deacon K S, Shih Y H 2012 Appl. Phys. Lett. 100 131114Google Scholar
[6] Shapiro J H 2012 arXiv:1201.4513 [quant-ph]
[7] Gong W L, Han S S 2009 arXiv:0911.4750[quant-ph]
[8] Chen M L, Li E R, Gong W L, Xu X Y, Zhao C Q, Shen X, Xu W D, Han S S 2013 Opt. Photon. J. 3 83Google Scholar
[9] Wang C L, Mei X, Pan L, Wang P, Li W, Gao X, Bo Z, Chen M L, Gong W, Han S S 2018 Remote Sens. 10 732Google Scholar
[10] Zerom P, Shi Z, O’Sullivan M N, Chan K W C, Krogstad M, Shapiro J H, Robert W, Boyd 2012 Phys. Rev. A 86 063817Google Scholar
[11] 顾德曼 J W 著 (陈家璧, 秦克诚, 曹其智 译) 2018 统计光学(第二版) (科学出版社) 第326页
Goodman J W (translated by Chen J B, Qing K C, Cao Q Z) 2000 Statistical Optics (2nd Ed.) (Beijing: Science Press) p326 (in Chinese)
[12] 陈玉良 1991 广播与电视技术 1 30
Chen Y L 1991 Radio TV Broadcast Eng. 1 30
[13] 翁宁泉, 曾宗泳, 肖黎明, 马成胜, 龚知本 1999 强激光与粒子束 11 673
Weng N Q, Zeng Z Y, Xiao L M, Ma C S, Gong Z B 1999 High Power Laser and Particle Beams 11 673
[14] Smith T A, Shih Y 2018 Phys. Rev. Lett. 120 063606Google Scholar
[15] Baykal Y, Plonus M A 1983 J. Opt. Soc. Am. 73 831Google Scholar
[16] Baykal Y, Plonus M A 1985 J. Opt. Soc. Am. A 2 2124Google Scholar
[17] 李明飞, 莫小范, 张安宁 2016 导航与控制 5 1Google Scholar
Li M F, Mo X F, Zhang A N 2016 Navigtion and Control 5 1Google Scholar
[18] 李明飞, 莫小范, 赵连洁, 霍娟, 杨然, 李凯, 张安宁 2015 物理学报 65 064201Google Scholar
Li M F, Mo X F, Zhao L J, Huo J, Yang R, Li K, Zhang A N 2015 Acta Phys. Sin. 65 064201Google Scholar
[19] Welsh S S, Edgar M P, Bowman R, Jonathan P, Sun B Q, Padgett M J 2013 Opt. Express 21 23068Google Scholar
[20] Huynh-Thu Q, Ghanbari M 2008 Electron. Lett. 44 800Google Scholar
[21] Li D, Mersereau R M, Simske S 2007 IEEE Geosci. Remote Sens. Lett. 4 340Google Scholar
Catalog
Metrics
- Abstract views: 8225
- PDF Downloads: 90
- Cited By: 0