Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Statistical analysis of shock properties driven by coronal mass ejections based on observations of type II radio bursts

Zhou Kun-Lun Ding Liu-Guan Wang Zhi-Wei Feng Li

Citation:

Statistical analysis of shock properties driven by coronal mass ejections based on observations of type II radio bursts

Zhou Kun-Lun, Ding Liu-Guan, Wang Zhi-Wei, Feng Li
PDF
HTML
Get Citation
  • In this paper, we investigate 77 type-II radio burst events' data observed by Wind/WAVES and STEREO/SWAVES from January 2007 to December 2015. By fitting the frequency-time profile to obtain the corresponding shock velocity, we study the relationship between the parameters of shock and those of coronal mass ejection (CME), solar flare and the associated SEP events, and explore the influences of type II radio enhancement on these relationships. Our findings are as follows. 1) In general, at the onset time of type II radio bursts within deca-hectometric (DH) waveband, the shock front is about 0.4Rs ahead of the leading edge of CME (shock standoff distance), and this distance increases as the CME propagates outward. In the low and high corona, the relationship between shock standoff distance and CME speed indicates a significant difference; the shock standoff distance is correlated with the CME speed positively at the low altitude, but negatively at high altitude. 2) The CME speed of the events with radio enhancement is significantly larger than that with no radio enhancement; and comparing with the events with no radio enhancement, the correlation coefficient between the shock speed and the mass and kinetic energy of the associated CME is significantly high for the events with radio enhancement. 3) There is no correlation between the duration of type II radio burst in DH waveband with enhancement and the speed, mass and kinetic energy of CME. However, it presents a positive correlation for the events with no radio enhancement. 4) Usually the speed of shock that can produce SEP event is obviously higher than that with producing no SEP event. The probability of the SEP generated by the events associated with radio enhancement is slightly higher than with no radio enhancement (73.5% > 67.4%), but for the large SEP events, the generation probability (67.6%) associated with radio enhancement is about one-order of magnitude higher than that with no radio enhancement (37.2%). This conclusion indicates that the type II radio enhancement can be used as one of the signatures of the shock or the radio source that more probably produces a large SEP event.
      Corresponding author: Ding Liu-Guan, dlg@nuist.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. U1731105), and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20171456), and the Qing Lan Project of Jiangsu Province for Ding L.G., and the Specialized Research Fund for Key Laboratory of Dark Matter and Space Astronomy, CAS.
    [1]

    Stewart R T, McCabe M K, Koomen M J, Hansen R T, Dulk G A 1974 Sol. Phys. 36 203Google Scholar

    [2]

    Vršnak B, Lulié S 2000 Sol. Phys. 196 181Google Scholar

    [3]

    Vršnak B, Cliver E W 2008 Sol. Phys. 253 215Google Scholar

    [4]

    Hundhausen A J, Holzer T E, Low B C 2012 J. Geophys. Res-Space. 92 11173

    [5]

    Kahler S W 1982 Astrophys. J. 261 710Google Scholar

    [6]

    Cane H V, Erickson W C, Prestage N P 2002 J. Geophys. Res-Space. 107 1315Google Scholar

    [7]

    Su W, Cheng X, Ding M D, Chen P F, Ning Z J, Ji H S 2016 Astrophys. J. 830 70Google Scholar

    [8]

    Wild J P, McCready L L 1950 Aust. J. Chem. 3 387Google Scholar

    [9]

    Cane H V, Stone R G, Fainberg J 1981 Geophys. Res. Lett. 8 1285Google Scholar

    [10]

    Gopalswamy N, Kaiser M L, Lepping R P, Kahler S W, Ogilvie K, Berdichevsky D, Kondo T, Isobe T, Akioka M 1998 J. Geophys. Res-Space. l 03 307

    [11]

    Kahler S W 2007 Space. Sci. Rev. 129 359Google Scholar

    [12]

    Reiner M J, Kaiser M L, Bougeret J L 2001 J. Geophys. Res. 106 12

    [13]

    Maia D, Pick M, Vourlidas A, Howard R A 2000 Astrophys. J. 528 49Google Scholar

    [14]

    Bain H M, Krucker Säm, Glesener L, Lin R P 2012 Astrophys. J. 750 44Google Scholar

    [15]

    Reiner M J, Vourlidas A, Cyr O C S, Burkepile J T, Howard R A, Kaiser M L, Prestage N P, Bougeret J L 2003 Astrophys. J. 590 533Google Scholar

    [16]

    Cho K S, Lee J, Moon Y J, Dryer M, Bong S C, Kim Y H, Park Y D 2007 Astron. Astrophys. 461 1121Google Scholar

    [17]

    Cho K S, Bong S C, Kim Y H, Moon Y J, Dryer M, Shanmugaraju A, Lee J, Park Y D 2008 Astron. Astrophys. 491 873Google Scholar

    [18]

    Feng S W, Chen Y, Kong X L, Li G, Song H Q, Feng X S, Ying Liu 2012 Astrophys. J. 753 21Google Scholar

    [19]

    Kong X L, Chen Y, Li G, Feng S W, Song H Q, Guo F, Jiao F R 2012 Astrophys. J. 750 158Google Scholar

    [20]

    Gopalswamy N, Yashiro S, Kaiser M L, Howard R A, Bougeret J L 2001 Astrophys. J. 548 91Google Scholar

    [21]

    Ding L G, Wang Z W, Feng L, Li G, Jiang Y 2019 Res. Astron. Astrophys. 19 1Google Scholar

    [22]

    Al-Hamadani F, Pohjolainen S, Valtonen E 2017 Sol. Phys. 292 127Google Scholar

    [23]

    Kahler S W 2001 J. Geophys. Res. 106 10

    [24]

    Shen C L, Wang Y M, Ye P Z, Zhao X P, Gui B, Wang S 2007 Astrophys. J. 670 849Google Scholar

    [25]

    Gopalswamy N, Aguilar-Rodriguez E, Yashiro S, Nunes S, Kaiser M L, Howard R A 2005 J. Geophys. Res. 110 12

    [26]

    Winter L M, Ledbetter K 2015 Astrophys. J. 809 105Google Scholar

    [27]

    Marque C, Posner A, Klein K L 2006 Astrophys. J. 642 1222Google Scholar

    [28]

    Müller-Mellin R, Kunow H, Fleißner V, Pehlke E, Rode E, Röschmann N, Scharmberg C, Sierks H, Rusznyak P, Mckenna-Lawlor S, Elendt I, Sequeiros J, Meziat D, Sanchez S, Medina J, Peral L D, Witte M, Marsden R, Henrion J 1995 Sol. Phys. 162 483Google Scholar

    [29]

    Von Rosenvinge T T, Reames D V, Baker R, Hawk J, Nolan J T, Ryan L, Shuman S, Wortman K A, Mewaldt R A, Cummings A C, Cook W R, Labrador A W, Leske R A, Wiedenbeck M E 2008 Space. Sci. Rev. 136 391Google Scholar

    [30]

    王智伟, 丁留贯, 周坤论, 乐贵明 2018 地球物理学报 61 3515Google Scholar

    Wang Z W, Ding L G, Zhou K L, Yue G M 2018 Chin. J. Geophys. 61 3515Google Scholar

    [31]

    Vršnak B, Magdalenić J, Zlobec P 2004 Astron. Astrophys. 413 753Google Scholar

    [32]

    Saito K, Poland A I, Munro R H 1977 Sol. Phys. 55 121Google Scholar

    [33]

    Gopalswamy N, Yashiro S 2011 Astrophys. J. 736 17Google Scholar

    [34]

    Mäkelä P, Gopalswamy N, Akiyama S, Xie H, Yashiro S, Recently M 2015 Astrophys. J. 806 13Google Scholar

    [35]

    Kocharov L, Pohjolainen S, Mishev A, Reiner M J, Lee J, Laitinen T, Didkovsky L V, Pizzo V J, Kim R, Klassen A, Karlicky M, Cho K S, Gary D E, Usoskin I, Valtonen E, Vainio R 2017 Astrophys. J. 839 79Google Scholar

    [36]

    Mittal N, Verma V K 2017 New. Astron. 50 60Google Scholar

    [37]

    Mujiber Rahman A, Shanmugaraju A, Umapathy S, Moon Y J 2013 J. Atmos. Sol-Terr. Phys 105 106

  • 图 1  典型II型射电暴频谱图及所采用不同密度模型拟合激波高度-时间变化图

    Figure 1.  Spectrum diagram of a typical type-II radio burst and the linear fitting results of spectrum with different coronal density model

    图 2  (a) 81个候选事件拟合激波速度与CME速度之间的关系. 蓝色圈代表激波速度与CME速度相符事件, 红色三角代表拟合激波速度远小于CME速度事件, 黑色实线是所有事件的线性拟合, 蓝色实线是所有相符事件的线性拟合; (b)拟合激波速度与CME速度之差的统计直方图

    Figure 2.  (a) Scatter plot of fitting shock speed and CME speed for all 81 candidate events. The blue circle represents the shock speed coincides with the CME speed event, the red triangle represents the events that the fitting shock speed is much smaller than the CME speed, the black solid line is the linear fit of all events, and the blue solid line is the linear fit of all 77 coincident or normal events. (b) Distribution of the speed difference between shock speed and CME speed.

    图 3  所有候选事件DH II型射电暴起始时刻激波高度与CME高度之间的关系. (a)蓝色圈是正常事件, 红色三角是异常事件, 黑色实线是所有事件的拟合线, 蓝色实线是正常事件起始高度的拟合线, 黑色虚线斜率为1. (b) DH II型射电暴起始时刻激波高度与CME高度差的直方图, 蓝色条为正常事件, 红色条为异常事件

    Figure 3.  Scatter plot of shock height and CME height at the onset of type IIs radio burst for all 81 candidate events. (a) The blue circle is a normal event, the red triangle is an abnormal event, the black solid line is the fitted line for all events, the blue solid line is the fitted line for the normal event start height, and the black dotted line slope is 1. (b) histogram of the difference between the shock height and the CME height at the start of the type IIs radio burst. The blue bar is a normal event and the red bar is an abnormal event.

    图 4  有无射电增强对激波速度与CME速度关系的影响

    Figure 4.  Difference between groups of radio enhancement and of no radio enhancement on shock speed and CME speed for normal events

    图 5  DH II型射电暴起始时刻(a)激波高度和(b) CME前沿高度的统计直方图. 蓝色为有射电增强的事件, 红色为无射电增强的事件

    Figure 5.  Statistical histogram of the shock height and the CME leading edge height at the start time of DH type II radio bursts for normal events. Blue is an event with radio enhancement, and red is an event with no radio enhancement.

    图 6  激波脱体距离随CME高度变化统计图

    Figure 6.  The histogram of the standoff distances as a function of CME heights

    图 7  (a)激波速度与CME质量的相关性, (b)激波速度与CME动能的关系. 蓝色圈为有射电增强的事件, 红色圈为无射电增强的事件, 黑色虚线为所有事件的拟合线, 蓝色虚线为有射电增强事件的线性拟合, 红色虚线为无射电增强事件的线性拟合

    Figure 7.  Scatter plot of shock speed and CME mass、kinetic energy for normal events. The blue circle is an event with enhanced radio enhancement, the red circle is an event with no radio enhancement, the black dotted line is the fitted line for all events, the blue dashed line is a linear fit result for radio-enhanced events, and the red dashed line is a linear fit result for no radio-enhanced events.

    图 8  激波速度与耀斑等级的相关性, 蓝色圈为有射电增强的事件, 红色圈为无射电增强的事件, 黑色虚线为所有事件的线性拟合, 蓝色虚线为有射电增强事件的线性拟合, 红色虚线为无射电增强的线性拟合.

    Figure 8.  Scatter plot between shock speed and flare class for normal events, blue circle for radio-enhanced events, red circle for no radio-enhanced events, black dashed line for linear fitting of all events, and blue dashed line is a linear fit for radio-enhanced events, the red dashed line is a linear fit for no radio enhancement events.

    图 9  DH II型射电暴持续时间与CME速度(a)、质量(b)和动能(c)的相关性, 蓝色圈为有射电增强的事件, 红色圈为无射电增强的事件. 黑色虚线为所有事件的线性拟合, 蓝色虚线为有射电增强事件的线性拟合, 红色虚线为无射电增强的线性拟合

    Figure 9.  Scatter plot of DH type II radio burst duration and CME speed(a), CME mass(b) and CME kinetic energy(c) for normal events. The blue circle is an event with radio enhancement, and the red circle is an event with no radio enhancement. The black dashed line is a linear fit for all events, the blue dashed line is a linear fit for radio-enhanced events, and the red dashed line is a linear fit for no radio-enhancement events.

    图 10  (a)有射电增强和(b)无射电增强的事件中大SEP、小SEP和无SEP事件所占百分比. 蓝、绿、红分别代表大SEP、小SEP和无SEP事件

    Figure 10.  Percentage of large SEP, small SEP, and no SEP events with(a) or without(b) radio-enhancement for normal events. Blue, green, and red respectively represent large SEP, small SEP, and no SEP events

    图 11  (a) SEP事件峰值与激波速度的相关关系, 黑色虚线为所有事件的线性拟合, 蓝色虚线为有射电增强事件的线性拟合, 红色虚线为无射电增强的线性拟合. (b)有无SEP事件的激波速度的统计直方图

    Figure 11.  (a) Scatter plot between SEP event peak and shock speed for normal events. black dashed line is a linear fit for all events, blue dashed line is a linear fit for radio enhanced events, and red dashed line is a linear fit for no radio enhancement. (b) Statistical histogram of shock speed associated with or without SEP events for normal events

  • [1]

    Stewart R T, McCabe M K, Koomen M J, Hansen R T, Dulk G A 1974 Sol. Phys. 36 203Google Scholar

    [2]

    Vršnak B, Lulié S 2000 Sol. Phys. 196 181Google Scholar

    [3]

    Vršnak B, Cliver E W 2008 Sol. Phys. 253 215Google Scholar

    [4]

    Hundhausen A J, Holzer T E, Low B C 2012 J. Geophys. Res-Space. 92 11173

    [5]

    Kahler S W 1982 Astrophys. J. 261 710Google Scholar

    [6]

    Cane H V, Erickson W C, Prestage N P 2002 J. Geophys. Res-Space. 107 1315Google Scholar

    [7]

    Su W, Cheng X, Ding M D, Chen P F, Ning Z J, Ji H S 2016 Astrophys. J. 830 70Google Scholar

    [8]

    Wild J P, McCready L L 1950 Aust. J. Chem. 3 387Google Scholar

    [9]

    Cane H V, Stone R G, Fainberg J 1981 Geophys. Res. Lett. 8 1285Google Scholar

    [10]

    Gopalswamy N, Kaiser M L, Lepping R P, Kahler S W, Ogilvie K, Berdichevsky D, Kondo T, Isobe T, Akioka M 1998 J. Geophys. Res-Space. l 03 307

    [11]

    Kahler S W 2007 Space. Sci. Rev. 129 359Google Scholar

    [12]

    Reiner M J, Kaiser M L, Bougeret J L 2001 J. Geophys. Res. 106 12

    [13]

    Maia D, Pick M, Vourlidas A, Howard R A 2000 Astrophys. J. 528 49Google Scholar

    [14]

    Bain H M, Krucker Säm, Glesener L, Lin R P 2012 Astrophys. J. 750 44Google Scholar

    [15]

    Reiner M J, Vourlidas A, Cyr O C S, Burkepile J T, Howard R A, Kaiser M L, Prestage N P, Bougeret J L 2003 Astrophys. J. 590 533Google Scholar

    [16]

    Cho K S, Lee J, Moon Y J, Dryer M, Bong S C, Kim Y H, Park Y D 2007 Astron. Astrophys. 461 1121Google Scholar

    [17]

    Cho K S, Bong S C, Kim Y H, Moon Y J, Dryer M, Shanmugaraju A, Lee J, Park Y D 2008 Astron. Astrophys. 491 873Google Scholar

    [18]

    Feng S W, Chen Y, Kong X L, Li G, Song H Q, Feng X S, Ying Liu 2012 Astrophys. J. 753 21Google Scholar

    [19]

    Kong X L, Chen Y, Li G, Feng S W, Song H Q, Guo F, Jiao F R 2012 Astrophys. J. 750 158Google Scholar

    [20]

    Gopalswamy N, Yashiro S, Kaiser M L, Howard R A, Bougeret J L 2001 Astrophys. J. 548 91Google Scholar

    [21]

    Ding L G, Wang Z W, Feng L, Li G, Jiang Y 2019 Res. Astron. Astrophys. 19 1Google Scholar

    [22]

    Al-Hamadani F, Pohjolainen S, Valtonen E 2017 Sol. Phys. 292 127Google Scholar

    [23]

    Kahler S W 2001 J. Geophys. Res. 106 10

    [24]

    Shen C L, Wang Y M, Ye P Z, Zhao X P, Gui B, Wang S 2007 Astrophys. J. 670 849Google Scholar

    [25]

    Gopalswamy N, Aguilar-Rodriguez E, Yashiro S, Nunes S, Kaiser M L, Howard R A 2005 J. Geophys. Res. 110 12

    [26]

    Winter L M, Ledbetter K 2015 Astrophys. J. 809 105Google Scholar

    [27]

    Marque C, Posner A, Klein K L 2006 Astrophys. J. 642 1222Google Scholar

    [28]

    Müller-Mellin R, Kunow H, Fleißner V, Pehlke E, Rode E, Röschmann N, Scharmberg C, Sierks H, Rusznyak P, Mckenna-Lawlor S, Elendt I, Sequeiros J, Meziat D, Sanchez S, Medina J, Peral L D, Witte M, Marsden R, Henrion J 1995 Sol. Phys. 162 483Google Scholar

    [29]

    Von Rosenvinge T T, Reames D V, Baker R, Hawk J, Nolan J T, Ryan L, Shuman S, Wortman K A, Mewaldt R A, Cummings A C, Cook W R, Labrador A W, Leske R A, Wiedenbeck M E 2008 Space. Sci. Rev. 136 391Google Scholar

    [30]

    王智伟, 丁留贯, 周坤论, 乐贵明 2018 地球物理学报 61 3515Google Scholar

    Wang Z W, Ding L G, Zhou K L, Yue G M 2018 Chin. J. Geophys. 61 3515Google Scholar

    [31]

    Vršnak B, Magdalenić J, Zlobec P 2004 Astron. Astrophys. 413 753Google Scholar

    [32]

    Saito K, Poland A I, Munro R H 1977 Sol. Phys. 55 121Google Scholar

    [33]

    Gopalswamy N, Yashiro S 2011 Astrophys. J. 736 17Google Scholar

    [34]

    Mäkelä P, Gopalswamy N, Akiyama S, Xie H, Yashiro S, Recently M 2015 Astrophys. J. 806 13Google Scholar

    [35]

    Kocharov L, Pohjolainen S, Mishev A, Reiner M J, Lee J, Laitinen T, Didkovsky L V, Pizzo V J, Kim R, Klassen A, Karlicky M, Cho K S, Gary D E, Usoskin I, Valtonen E, Vainio R 2017 Astrophys. J. 839 79Google Scholar

    [36]

    Mittal N, Verma V K 2017 New. Astron. 50 60Google Scholar

    [37]

    Mujiber Rahman A, Shanmugaraju A, Umapathy S, Moon Y J 2013 J. Atmos. Sol-Terr. Phys 105 106

  • [1] Yan Hao, Ding Liu-Guan, Feng Li, Gu Bin. Relationship between solar energetic particle intensity and coronal mass ejections and its associated type II radio bursts. Acta Physica Sinica, 2024, 73(7): 079601. doi: 10.7498/aps.73.20231855
    [2] Zhu Cong, Ding Liu-Guan, Zhou Kun-Lun, Qian Tian-Qi. Statistical analysis of characteristics of classified type II radio bursts and their associated solar energetic particle events. Acta Physica Sinica, 2021, 70(9): 099601. doi: 10.7498/aps.70.20201800
    [3] Zhou Kun-Lun, Ding Liu-Guan, Qian Tian-Qi, Zhu Cong, Wang Zhi-Wei, Feng Li. Statistical analysis of the relationship between type II radio enhancement and solar energetic particle event. Acta Physica Sinica, 2020, 69(16): 169601. doi: 10.7498/aps.69.20200041
    [4] Xiong Yu-Wei, Yin Kui-Bo, Wen Yi-Feng, Xin Lei, Yao Li-Bing, Zhu Chong-Yang, Sun Li-Tao. In situ observation of lithiation mechanism of SnO2 nanoparticles. Acta Physica Sinica, 2019, 68(15): 158201. doi: 10.7498/aps.68.20190431
    [5] Ni Su-Lan, Gu Bin, Han Zhi-Yi. Interplanetary coronal mass ejection induced forbush decrease event:a simulation study with one-dimensional stochastic differential method. Acta Physica Sinica, 2017, 66(13): 139601. doi: 10.7498/aps.66.139601
    [6] Mu Zong-Xin, Mu Xiao-Dong, Wang Chun, Jia Li, Dong Chuang. Analysis on the ionization of high power pulsed unbalanced magnetron sputtering powered by direct current. Acta Physica Sinica, 2011, 60(1): 015204. doi: 10.7498/aps.60.015204
    [7] Tang Qi, Meng Fan-Yi, Zhang Kuang, Wu Qun, Li Le-Wei. Polarization characteristics of the wave reflection at the interface of vacuum and Faraday chiral medium. Acta Physica Sinica, 2011, 60(1): 014206. doi: 10.7498/aps.60.014206
    [8] Tao Ying-Long, Wang Jian-Guo, Niu Sheng-Li, Zhu Jin-Hui, Fan Ru-Yu. Numerical simulation of the ionization effects of prompt radiation from high-altitude nuclear explosions. Acta Physica Sinica, 2010, 59(8): 5914-5920. doi: 10.7498/aps.59.5914
    [9] Feng Wen-Tian, Ma Xin-Wen, Zhu Xiao-Long, Zhang Shao-Feng, Liu Hui-Ping, Xu Shen-Yue, Qian Dong-Bin, Li Bin, Yan Shun-Cheng, Zhang Da-Cheng, Meng Ling-Jie, Zhang Peng-Ju. Momentum image of emission electrons in transfer ionization process of slow He2+ colliding on He. Acta Physica Sinica, 2010, 59(12): 8471-8477. doi: 10.7498/aps.59.8471
    [10] Li Wei-Hu, Yuan Rong. Statistical characteristics of gamma ray and radio emission of BL Lac object. Acta Physica Sinica, 2009, 58(9): 6671-6676. doi: 10.7498/aps.58.6671
    [11] Wang Xin-Qing, Li Liang, Chu Ning-Jie, Jin Hong-Xiao, Ge Hong-Liang. Theoretical optimization for field emission current density from carbon nanotubes array. Acta Physica Sinica, 2008, 57(11): 7173-7177. doi: 10.7498/aps.57.7173
    [12] Xu Jin, Li Fu-Long, Yang De-Ren. Grown-in oxygen precipitates in czochralski silicon investigated by transmission electron microscopy. Acta Physica Sinica, 2007, 56(7): 4113-4116. doi: 10.7498/aps.56.4113
    [13] Cao Shi-Ping, Ma Xin-Wen, Dorn A., Dürr M., Ullrich J.. Correlation of emitted electrons in near threshold double ionization of helium by electron impact. Acta Physica Sinica, 2007, 56(11): 6386-6392. doi: 10.7498/aps.56.6386
    [14] Wang Jing, Feng Xue-Shang. Classified prediction of geomagnetic disturbance caused by coronal mass ejection. Acta Physica Sinica, 2007, 56(4): 2466-2474. doi: 10.7498/aps.56.2466
    [15] Cheng Yong, Zhang Xiong, Wu Lin, Mao Wei-Ming, You Li-Sha. Analysis of the correlation between γ-ray and radio emissions from γ-ray loud Blazar using the discrete correlation function. Acta Physica Sinica, 2006, 55(2): 988-994. doi: 10.7498/aps.55.988
    [16] Zheng Guo-Liang, Wu Dan-Dan, She Wei-Long. A new method for analysis of electro-optic detection for THz radiation. Acta Physica Sinica, 2005, 54(7): 3063-3068. doi: 10.7498/aps.54.3063
    [17] Zhu Ya-Bo, Wang Wan-Lu, Lian Ke-Jun. . Acta Physica Sinica, 2002, 51(10): 2335-2339. doi: 10.7498/aps.51.2335
    [18] Kang Zhen-chuan. A STUDY OF SYNTHETIC DIAMOND SURFACE USING REFLECTION ELECTRON MICROSCOPY. Acta Physica Sinica, 1983, 32(6): 808-811. doi: 10.7498/aps.32.808
    [19] CHENG PENG-ZHU, MA XIAO-HUA, LUO QI-GUANG, YANG DA-YU. THE PREPARATION OF TRANSMISSION ELECTRON MICROSCOPE SPECIMEN BY ELECTROLYTIC POLISHING METHOD. Acta Physica Sinica, 1981, 30(2): 286-290. doi: 10.7498/aps.30.286
    [20] GUO KE-XIN, LIN BAO-JUN. A TEM STUDY OF PARTIAL DISLOCATIONS IN A NICKEL-CHROMIUM ALLOY. Acta Physica Sinica, 1980, 29(4): 494-499. doi: 10.7498/aps.29.494
Metrics
  • Abstract views:  6199
  • PDF Downloads:  44
  • Cited By: 0
Publishing process
  • Received Date:  20 February 2019
  • Accepted Date:  29 April 2019
  • Available Online:  01 July 2019
  • Published Online:  05 July 2019

/

返回文章
返回