Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Statistical analysis of the relationship between type II radio enhancement and solar energetic particle event

Zhou Kun-Lun Ding Liu-Guan Qian Tian-Qi Zhu Cong Wang Zhi-Wei Feng Li

Citation:

Statistical analysis of the relationship between type II radio enhancement and solar energetic particle event

Zhou Kun-Lun, Ding Liu-Guan, Qian Tian-Qi, Zhu Cong, Wang Zhi-Wei, Feng Li
PDF
HTML
Get Citation
  • In this paper, we investigated 82 type-II radio burst events detected by some ground stations Learmonth, YNAO, and BIRS and spacecraft Wind/WAVES, STEREO/WAVES from January 2007 to December 2015. And we identified 39 events associated with radio enhancement and 43 events without enhancement. We found that: 1) The CME velocity, mass, kinetic energy and flare class with respect to type II radio enhancement events were generally higher than that of no enhancement events, and these properties in the solar energetic particle (SEP) events were significantly higher than that no SEP event, regardless of whether radio enhancement or not. 2) As shown in the characteristic time analysis, the initial release time of SEPs is generally earlier than the start time of radio enhancement, so we can the radio enhancement is only as a signature of the shock enhancement rather than the direct generator of SEP events. 3) Whether radio enhancement or not, the onset height of type IIs associated with SEP event is slightly lower than that of event without SEP. For the absence height, the SEP events are significantly higher than the no-SEP events, and that the absence height of enhancement events are also distinctly higher than that non-enhancement events, which reveals that the enhanced CME shock characterized by enhanced radio burst can keep propagating to more higher or further space. 4) When one fast and wide CME fully sweeps over another slow and narrow preceding CME, CME interaction can more easily generate radio enhancement, but no distinctive difference between SEP events and non-SEP events. So the results of this paper reveal that radio enhancement can be regarded as a manifestation of CME shock becoming strong during interacting with other CME, and the enhanced shock can accelerate the particle to generate large SEP events more easily. However, the type II radio enhancement is not the direct producer or causer that generate large SEP event.
      Corresponding author: Ding Liu-Guan, dlg@nuist.edu.cn
    [1]

    Vršnak B, Cliver E W 2008 Sol. Phys. 253 215Google Scholar

    [2]

    Kahler S W 2001 J. Geophys. Res. 106 20947Google Scholar

    [3]

    Reames D V 1999 Space. Sci. Rev. 90 413Google Scholar

    [4]

    Cliver E W, Kahler S W 2004 Astrophys. J. 605 902Google Scholar

    [5]

    Gopalswamy N, Xie H, Yashiro S, Akiyama S, Mäkelä P, Usoskin I G 2012 Space. Sci. Rev. 171 23Google Scholar

    [6]

    Ding L G, Jiang Y, Li G 2016 Astrophys. J. 818 169Google Scholar

    [7]

    Vainio R, Agueda N, Aran A, Lario D 2007 Space Weather. Springer Netherlands. pp 27–37

    [8]

    Cane H V, von Rosenvinge T T, Cohen C M S, Mewaldt R A 2003 Geophys. Res. Lett. 30 8017Google Scholar

    [9]

    Li C, Tang Y H, Dai Y, Fang C, Vial C 2007 Astron. Astrophys. 472 283Google Scholar

    [10]

    Le G M, Zhang X F 2017 Res. Astron. Astrophys. 17 123Google Scholar

    [11]

    Le G M, Li C, Zhang X F 2017 Res. Astron. Astrophys. 17 73Google Scholar

    [12]

    Wu S S, Qin G 2018 J. Geophys. Res-Space Phys. 123 76Google Scholar

    [13]

    Zhao M X, Le G M, Chi Y T 2018 Res. Astron. Astrophys. 18 74Google Scholar

    [14]

    Zhao M X, Le G M 2020 Res. Astron. Astrophys. 20 37Google Scholar

    [15]

    Mason G M, Mazur J E, Dwyer J R 1999 Astrophys. J. 525 133Google Scholar

    [16]

    Mason G M, Dwyer J R, Mazur J E 2000 Astrophys. J. 545 157Google Scholar

    [17]

    Gopalswamy N, Yashiro S, Michałek G, Kaiser M L, Howard R A, Reames D V, Leske R, von Rosenvinge T 2002 Astrophys. J. 572 103Google Scholar

    [18]

    Gopalswamy N, Yashiro S, Krucker S, Stenborg G, Howard R A 2004 J. Geophys. Res-Space. 109 12105Google Scholar

    [19]

    Li G, Moore R, Mewaldt R A, Zhao L, Labrador A W 2012 Space. Sci. Rev. 171 141Google Scholar

    [20]

    Shen C L, Wang Y M, Ye P Z, Zhao X P, Gui B, Wang S 2007 Astrophys. J. 670 849Google Scholar

    [21]

    Gopalswamy N, Aguilar-Rodriguez E, Yashiro S, Nunes S, Kaiser M L, Howard R A 2005 J. Geophys. Res. 110 12Google Scholar

    [22]

    Winter L M, Ledbetter K 2015 Astrophys. J. 809 105Google Scholar

    [23]

    Gopalswamy N, Yashiro S, Kaiser M L, Howard R A, Bougeret J L 2001 Astrophys. J. 548 91Google Scholar

    [24]

    Ding L G, Li G, Jiang Y, Le G M, Shen C L, Wang Y M, Chen Y, Xu F, Gu B, Zhang Y N 2014 Astrophys. J. 793 35Google Scholar

    [25]

    Ding L G, Wang Z W, Feng L, Li G, Jiang Y 2019 Res. Astron. Astrophys. 19 1Google Scholar

    [26]

    Al-Hamadani F, Pohjolainen S, Valtonen E 2017 Sol. Phys. 292 127Google Scholar

    [27]

    Brueckner G E, Howard R A, Koomen M J, Korendyke C M, Michels D J, Moses J D, Socker D G, Dere K P, Lamy P L, Llebaria A, Bout M V, Schwenn R, Simnett G M, Bedford D K, Eyles C J 1995 Sol. Phys. 162 357Google Scholar

    [28]

    Müller-Mellin R, Kunow H, Fleißner V, Pehlke E, Rode E, Röschmann N, Scharmberg C, Sierks H, Rusznyak P, Mckenna-Lawlor S, Elendt I, Sequeiros J, Meziat D, Sanchez S, Medina J, del Peral L, Witte M, Marsden R, Henrion J 1995 Sol. Phys. 162 483Google Scholar

    [29]

    von Rosenvinge T T, Reames D V, Baker R, Hawk J, Nolan J T, Ryan L, Shuman S, Wortman K A, Mewaldt R A, Cummings A C, Cook W R, Labrador A W, Leske R A, Wiedenbeck M E 2008 Space. Sci. Rev. 136 391Google Scholar

    [30]

    王智伟, 丁留贯, 周坤论, 乐贵明 2018 地球物理学报 61 3515Google Scholar

    Wang Z W, Ding L G, Zhou K L, Le G M 2018 Chin. J. Geophys. 61 3515Google Scholar

    [31]

    Tylka A J, Cohen C M S, Dietrich W F, Krucker S, McGuire R E, Mewaldt R A, Ng C K, Reames D V, Share G H 2003 The 28 th International Cosmic Ray Conference 6 3305

    [32]

    Kim R S, Cho K S, Lee J, Bong S C, Park Y D 2014 J. Geophys. Res-Space. 119 9419Google Scholar

    [33]

    乐贵明, 唐玉华, 韩延本 2007 科学通报 52 2461Google Scholar

    Le G M, Tang Y H, Han Y B 2007 Chin. Sci. Bull. 52 2461Google Scholar

    [34]

    Newkirk G Jr 1961 Astrophys. J. 133 983Google Scholar

    [35]

    Vršnak B, Magdalenić J, Zlobec P 2004 Astron. Astrophys. 413 753Google Scholar

    [36]

    Saito K, Poland A I, Munro R H 1977 Sol. Phys. 55 121Google Scholar

    [37]

    Gopalswamy N, S Yashiro 2011 Astrophys. J. 736 17Google Scholar

    [38]

    Mäkelä P, Gopalswamy N, Akiyama S, Xie H, Yashiro S 2015 Astrophys. J. 806 13Google Scholar

    [39]

    Kocharov L, Pohjolainen S, Mishev A, Reiner M J, Lee J, Laitinen T, Didkovsky L V, Pizzo V J, Kim R, Klassen A, Karlicky M, Cho K S, Gary D E, Usoskin I, Valtonen E, Vainio R 2017 Astrophys. J. 839 79Google Scholar

    [40]

    Temmer M, Vršnak B, Rollett T, Bein B, Koning D, Liu Y, Bosman E, Davies J A, Most C, Zic T, Veronig A M, Bothmer V, Harrison R, Nitta N, Bisi M, Flor O, Eastwood J, Odstrcil D, Forsyth R 2012 Astrophys. J. 749 57Google Scholar

    [41]

    Ding L G, Jiang Y, Zhao L L, Li G 2013 Astrophys. J. 763 30Google Scholar

    [42]

    Martínez Oliveros J C, Raftery C L, Bain H M, Liu Y, Krupar V, Bale S, Krucker S 2012 Astrophys. J. 748 66Google Scholar

    [43]

    周坤论, 丁留贯, 王智伟, 封莉 2019 物理学报 68 13Google Scholar

    Zhou K L, Ding L G, Wang Z W, Feng L 2019 Acta Phys. Sin. 68 13Google Scholar

    [44]

    Bemporad A, Mancuso S 2013 J. Adv. Res. 4 287Google Scholar

    [45]

    Sheeley Jr N R, Hakala W N, Wang Y M 2000 J. Geophys. Res. 105 5081Google Scholar

    [46]

    Vourlidas A, Wu S T, Wang A H, Subramanian P, Howard R A 2003 J. Adv. Res. 598 1392Google Scholar

    [47]

    Cho K S, Lee J, Moon Y J, Dryer M, Bong S C, Kim Y H, Park Y D 2007 Astron. Astrophys. 461 1121Google Scholar

    [48]

    Cho K S, Bong S C, Kim Y H, Moon Y J, Dryer M, Shanmugaraju A, Lee J, Park Y D 2008 Astron. Astrophys. 491 873Google Scholar

    [49]

    Feng S W, Chen Y, Kong X L, Li G, Song H Q, Feng X S, Ying Liu 2012 Astrophys. J. 753 21Google Scholar

  • 图 1  (a, c)有射电增强和无射电增强的II型射电暴频谱图; (b, d) CME1, CME2及拟合激波高度-时间变化图

    Figure 1.  (a, c) Spectrum diagram of a type II radio burst with and without enhancement; (b, d) the height-time profile of CME1, CME2 and its shock.

    图 2  CME速度、质量、动能和耀斑统计直方图. 蓝色为有射电增强事件(Group I), 红色为无射电增强事件(Group II)

    Figure 2.  Histogram of CME velocity, mass, kinetic energy and flare class. Blue denotes radio enhancement events (Group I), and red denotes no enhancement events (Group II).

    图 3  SEP事件峰值通量统计直方图

    Figure 3.  Statistical histogram of SEP peak intensity.

    图 4  CME速度、质量、动能与SEP事件关联的统计直方图. 蓝色是有SEP事件, 红色是无SEP事件

    Figure 4.  Histogram of CME velocity, mass, kinetic energy with SEP/No SEP, and blue denotes the events with SEP, and red denotes the events without SEP.

    图 5  以SEP事件起始时刻作为参考点0, 各时间点与参考点之差的统计直方图. II型射电暴起始(T1红色)和结束时刻(T2蓝色)、射电增强起始(T3紫色)和结束时刻(T4绿色)、SEP峰值时刻(T5灰色)

    Figure 5.  Uses the starting moment of the SEP events as the reference point (0), histogram of the difference between type II radio burst start /stop time(T1/T2), radio enhancement start/stop(T3/T4), SEP stop time(T5) and the reference point respectively.

    图 6  射电增强事件 (a, b) II型射电暴开始、结束高度在不同速度区间内的均值分布; (c, d) II型射电暴开始、结束高度的统计直方图

    Figure 6.  For radio enhancement events, (a, b) the bin-average distribution of the type IIs start/stop height in different speed intervals; (c, d) the histogram of the type IIs start/stop height.

    图 7  无射电增强事件 (a), (b) II型射电暴起始、结束高度在不同速度区间内的均值分布; (c), (d)II型射电暴起始、结束高度的统计直方图

    Figure 7.  For no radio enhancement events: (a, b) The bin-average distribution of the type IIs start/stop height in different speed intervals; (c, d) the histogram of the type IIs start/stop height.

    图 8  射电增强事件 (a)非增强区域拟合密度模型倍数N1; (b)增强区域拟合密度模型倍数N2; (c) N2与N1差值的统计直方图

    Figure 8.  Histogram of N1, N2, N2-N1. N1 and N2 are the multiples of coronal density model used in the fitting of type II radio burst and its enhancement episode respectively.

    图 9  CME1和CME2 速度、角宽、重叠角宽的统计直方图

    Figure 9.  Histogram of CME1 and CME2 with speed, angular width and overlap width.

  • [1]

    Vršnak B, Cliver E W 2008 Sol. Phys. 253 215Google Scholar

    [2]

    Kahler S W 2001 J. Geophys. Res. 106 20947Google Scholar

    [3]

    Reames D V 1999 Space. Sci. Rev. 90 413Google Scholar

    [4]

    Cliver E W, Kahler S W 2004 Astrophys. J. 605 902Google Scholar

    [5]

    Gopalswamy N, Xie H, Yashiro S, Akiyama S, Mäkelä P, Usoskin I G 2012 Space. Sci. Rev. 171 23Google Scholar

    [6]

    Ding L G, Jiang Y, Li G 2016 Astrophys. J. 818 169Google Scholar

    [7]

    Vainio R, Agueda N, Aran A, Lario D 2007 Space Weather. Springer Netherlands. pp 27–37

    [8]

    Cane H V, von Rosenvinge T T, Cohen C M S, Mewaldt R A 2003 Geophys. Res. Lett. 30 8017Google Scholar

    [9]

    Li C, Tang Y H, Dai Y, Fang C, Vial C 2007 Astron. Astrophys. 472 283Google Scholar

    [10]

    Le G M, Zhang X F 2017 Res. Astron. Astrophys. 17 123Google Scholar

    [11]

    Le G M, Li C, Zhang X F 2017 Res. Astron. Astrophys. 17 73Google Scholar

    [12]

    Wu S S, Qin G 2018 J. Geophys. Res-Space Phys. 123 76Google Scholar

    [13]

    Zhao M X, Le G M, Chi Y T 2018 Res. Astron. Astrophys. 18 74Google Scholar

    [14]

    Zhao M X, Le G M 2020 Res. Astron. Astrophys. 20 37Google Scholar

    [15]

    Mason G M, Mazur J E, Dwyer J R 1999 Astrophys. J. 525 133Google Scholar

    [16]

    Mason G M, Dwyer J R, Mazur J E 2000 Astrophys. J. 545 157Google Scholar

    [17]

    Gopalswamy N, Yashiro S, Michałek G, Kaiser M L, Howard R A, Reames D V, Leske R, von Rosenvinge T 2002 Astrophys. J. 572 103Google Scholar

    [18]

    Gopalswamy N, Yashiro S, Krucker S, Stenborg G, Howard R A 2004 J. Geophys. Res-Space. 109 12105Google Scholar

    [19]

    Li G, Moore R, Mewaldt R A, Zhao L, Labrador A W 2012 Space. Sci. Rev. 171 141Google Scholar

    [20]

    Shen C L, Wang Y M, Ye P Z, Zhao X P, Gui B, Wang S 2007 Astrophys. J. 670 849Google Scholar

    [21]

    Gopalswamy N, Aguilar-Rodriguez E, Yashiro S, Nunes S, Kaiser M L, Howard R A 2005 J. Geophys. Res. 110 12Google Scholar

    [22]

    Winter L M, Ledbetter K 2015 Astrophys. J. 809 105Google Scholar

    [23]

    Gopalswamy N, Yashiro S, Kaiser M L, Howard R A, Bougeret J L 2001 Astrophys. J. 548 91Google Scholar

    [24]

    Ding L G, Li G, Jiang Y, Le G M, Shen C L, Wang Y M, Chen Y, Xu F, Gu B, Zhang Y N 2014 Astrophys. J. 793 35Google Scholar

    [25]

    Ding L G, Wang Z W, Feng L, Li G, Jiang Y 2019 Res. Astron. Astrophys. 19 1Google Scholar

    [26]

    Al-Hamadani F, Pohjolainen S, Valtonen E 2017 Sol. Phys. 292 127Google Scholar

    [27]

    Brueckner G E, Howard R A, Koomen M J, Korendyke C M, Michels D J, Moses J D, Socker D G, Dere K P, Lamy P L, Llebaria A, Bout M V, Schwenn R, Simnett G M, Bedford D K, Eyles C J 1995 Sol. Phys. 162 357Google Scholar

    [28]

    Müller-Mellin R, Kunow H, Fleißner V, Pehlke E, Rode E, Röschmann N, Scharmberg C, Sierks H, Rusznyak P, Mckenna-Lawlor S, Elendt I, Sequeiros J, Meziat D, Sanchez S, Medina J, del Peral L, Witte M, Marsden R, Henrion J 1995 Sol. Phys. 162 483Google Scholar

    [29]

    von Rosenvinge T T, Reames D V, Baker R, Hawk J, Nolan J T, Ryan L, Shuman S, Wortman K A, Mewaldt R A, Cummings A C, Cook W R, Labrador A W, Leske R A, Wiedenbeck M E 2008 Space. Sci. Rev. 136 391Google Scholar

    [30]

    王智伟, 丁留贯, 周坤论, 乐贵明 2018 地球物理学报 61 3515Google Scholar

    Wang Z W, Ding L G, Zhou K L, Le G M 2018 Chin. J. Geophys. 61 3515Google Scholar

    [31]

    Tylka A J, Cohen C M S, Dietrich W F, Krucker S, McGuire R E, Mewaldt R A, Ng C K, Reames D V, Share G H 2003 The 28 th International Cosmic Ray Conference 6 3305

    [32]

    Kim R S, Cho K S, Lee J, Bong S C, Park Y D 2014 J. Geophys. Res-Space. 119 9419Google Scholar

    [33]

    乐贵明, 唐玉华, 韩延本 2007 科学通报 52 2461Google Scholar

    Le G M, Tang Y H, Han Y B 2007 Chin. Sci. Bull. 52 2461Google Scholar

    [34]

    Newkirk G Jr 1961 Astrophys. J. 133 983Google Scholar

    [35]

    Vršnak B, Magdalenić J, Zlobec P 2004 Astron. Astrophys. 413 753Google Scholar

    [36]

    Saito K, Poland A I, Munro R H 1977 Sol. Phys. 55 121Google Scholar

    [37]

    Gopalswamy N, S Yashiro 2011 Astrophys. J. 736 17Google Scholar

    [38]

    Mäkelä P, Gopalswamy N, Akiyama S, Xie H, Yashiro S 2015 Astrophys. J. 806 13Google Scholar

    [39]

    Kocharov L, Pohjolainen S, Mishev A, Reiner M J, Lee J, Laitinen T, Didkovsky L V, Pizzo V J, Kim R, Klassen A, Karlicky M, Cho K S, Gary D E, Usoskin I, Valtonen E, Vainio R 2017 Astrophys. J. 839 79Google Scholar

    [40]

    Temmer M, Vršnak B, Rollett T, Bein B, Koning D, Liu Y, Bosman E, Davies J A, Most C, Zic T, Veronig A M, Bothmer V, Harrison R, Nitta N, Bisi M, Flor O, Eastwood J, Odstrcil D, Forsyth R 2012 Astrophys. J. 749 57Google Scholar

    [41]

    Ding L G, Jiang Y, Zhao L L, Li G 2013 Astrophys. J. 763 30Google Scholar

    [42]

    Martínez Oliveros J C, Raftery C L, Bain H M, Liu Y, Krupar V, Bale S, Krucker S 2012 Astrophys. J. 748 66Google Scholar

    [43]

    周坤论, 丁留贯, 王智伟, 封莉 2019 物理学报 68 13Google Scholar

    Zhou K L, Ding L G, Wang Z W, Feng L 2019 Acta Phys. Sin. 68 13Google Scholar

    [44]

    Bemporad A, Mancuso S 2013 J. Adv. Res. 4 287Google Scholar

    [45]

    Sheeley Jr N R, Hakala W N, Wang Y M 2000 J. Geophys. Res. 105 5081Google Scholar

    [46]

    Vourlidas A, Wu S T, Wang A H, Subramanian P, Howard R A 2003 J. Adv. Res. 598 1392Google Scholar

    [47]

    Cho K S, Lee J, Moon Y J, Dryer M, Bong S C, Kim Y H, Park Y D 2007 Astron. Astrophys. 461 1121Google Scholar

    [48]

    Cho K S, Bong S C, Kim Y H, Moon Y J, Dryer M, Shanmugaraju A, Lee J, Park Y D 2008 Astron. Astrophys. 491 873Google Scholar

    [49]

    Feng S W, Chen Y, Kong X L, Li G, Song H Q, Feng X S, Ying Liu 2012 Astrophys. J. 753 21Google Scholar

  • [1] Yan Hao, Ding Liu-Guan, Feng Li, Gu Bin. Relationship between solar energetic particle intensity and coronal mass ejections and its associated type II radio bursts. Acta Physica Sinica, 2024, 73(7): 079601. doi: 10.7498/aps.73.20231855
    [2] Bai Ru-Xue, Guo Hong-Xia, Zhang Hong, Wang Di, Zhang Feng-Qi, Pan Xiao-Yu, Ma Wu-Ying, Hu Jia-Wen, Liu Yi-Wei, Yang Ye, Lyu Wei, Wang Zhong-Ming. High-energy proton radiation effect of Gallium nitride power device with enhanced Cascode structure. Acta Physica Sinica, 2023, 72(1): 012401. doi: 10.7498/aps.72.20221617
    [3] Liu Xuan-Xuan, Guo Hong-Xuan, Xu Tao, Yin Kui-Bo, Sun Li-Tao. In-situ liquid phase transmission electron microscope and its application in nanoparticle characterization. Acta Physica Sinica, 2021, 70(8): 086701. doi: 10.7498/aps.70.20201899
    [4] Zhang Yun-Feng, Jia Huan-Yu, Wang Hui. Research on the peak energy spectrum of the solar cosmic ray ground level enhancement event (GLE72). Acta Physica Sinica, 2021, 70(10): 109601. doi: 10.7498/aps.70.20201662
    [5] Fan Li-Ming, Bao Jing-Dong. Diffusion enhancement of the particle in disorder medium by biased force. Acta Physica Sinica, 2021, 70(19): 190502. doi: 10.7498/aps.70.20202063
    [6] Zhu Cong, Ding Liu-Guan, Zhou Kun-Lun, Qian Tian-Qi. Statistical analysis of characteristics of classified type II radio bursts and their associated solar energetic particle events. Acta Physica Sinica, 2021, 70(9): 099601. doi: 10.7498/aps.70.20201800
    [7] Yu Tao, Yang Dong-Yu, Ma Rui, Zhu Yu-Peng, Shi Yi-Shi. Enhanced-visual-cryptography-based optical information hiding system. Acta Physica Sinica, 2020, 69(14): 144202. doi: 10.7498/aps.69.20200496
    [8] Huo Zhi-Sheng, Pu Hong-Bin, Li Wei-Qin. Charging effect of polymer thin film under irradiation of high-energy transmission electron beam. Acta Physica Sinica, 2019, 68(23): 230201. doi: 10.7498/aps.68.20191112
    [9] Zhou Kun-Lun, Ding Liu-Guan, Wang Zhi-Wei, Feng Li. Statistical analysis of shock properties driven by coronal mass ejections based on observations of type II radio bursts. Acta Physica Sinica, 2019, 68(13): 139601. doi: 10.7498/aps.68.20190223
    [10] He Ying, Ma Yu-Fei, Tong Yao, Peng Zhen-Fang, Yu Xin. Fiber evanescent wave quartz-enhanced photoacoustic spectroscopy. Acta Physica Sinica, 2018, 67(2): 020701. doi: 10.7498/aps.67.20171881
    [11] Zhao Ze-Yu, Liu Jin-Qiao, Li Ai-Wu, Niu Li-Gang, Xu Ying. Theoretical study of microcavity-antireflection resonance hybrid modes enhanced absorption of organic solar cells. Acta Physica Sinica, 2016, 65(24): 248801. doi: 10.7498/aps.65.248801
    [12] Zhao Fu-Ze, Zhu Shao-Zhen, Feng Xiao-Hui, Yang Yuan-Sheng. Sound field simulation of ultrasonic processing to fabricate carbon nanotubes reinforced AZ91D composites. Acta Physica Sinica, 2015, 64(14): 144302. doi: 10.7498/aps.64.144302
    [13] Ding Dong, Yang Shi-E, Chen Yong-Sheng, Gao Xiao-Yong, Gu Jin-Hua, Lu Jing-Xiao. Numerical simulation of light absorption enhancement in microcrystalline silicon solar cells with Al nanoparticle arrays. Acta Physica Sinica, 2015, 64(24): 248801. doi: 10.7498/aps.64.248801
    [14] Li Guo-Long, He Li-Jun, Li Jin, Li Xue-Sheng, Liang Sen, Gao Mang-Mang, Yuan Hai-Wen. Light absorption enhancement in polymer solar cells with nano-Ag. Acta Physica Sinica, 2013, 62(19): 197202. doi: 10.7498/aps.62.197202
    [15] Liu Yan-Yan, Dong Lei, Wu Hong-Peng, Zheng Hua-Dan, Ma Wei-Guang, Zhang Lei, Yin Wang-Bao, Jia Suo-Tang. All optical quartz-enhanced photoacoustic spectroscopy. Acta Physica Sinica, 2013, 62(22): 220701. doi: 10.7498/aps.62.220701
    [16] Li Guo-Long, Li Jin. The light absorption enhancement in polymer solar cells with periodic nano-structures gratings. Acta Physica Sinica, 2012, 61(20): 207204. doi: 10.7498/aps.61.207204
    [17] Ouyang Jian-Ming, Ma Yan-Yun, Shao Fu-Qiu, Zou De-Bin. The effect of energetic electron impact ionization on radiation ionization process of high-altitude nuclear explosion. Acta Physica Sinica, 2012, 61(21): 212802. doi: 10.7498/aps.61.212802
    [18] Zhu Pei-Ping, Yuan Qing-Xi, Huang Wan-Xia, Wang Jun-Yue, Shu Hang, Wu Zi-Yu, Xian Ding-Chang. Principles of X-ray diffraction enhanced imaging. Acta Physica Sinica, 2006, 55(3): 1089-1098. doi: 10.7498/aps.55.1089
    [19] Zhu Ya-Bo, Wang Wan-Lu, Lian Ke-Jun. . Acta Physica Sinica, 2002, 51(10): 2335-2339. doi: 10.7498/aps.51.2335
    [20] XU BEI-XUE, WU JUN-LEI, LIU WEI-MIN, YANY HAI, SHAO QING-YI, LIU SHENG, XUE ZENG-QUAN, WU QUAN-DE. ENHANCED PHOTOEMISSION FROM METAL NANOPARTICLE COMPOSITE THIN FILMS (Ag-BaO) DOPED WITH RARE-EARTH ELEMENTS . Acta Physica Sinica, 2001, 50(5): 977-980. doi: 10.7498/aps.50.977
Metrics
  • Abstract views:  6465
  • PDF Downloads:  68
  • Cited By: 0
Publishing process
  • Received Date:  07 January 2020
  • Accepted Date:  08 May 2020
  • Available Online:  25 May 2020
  • Published Online:  20 August 2020

/

返回文章
返回