-
The diffusion dynamics of a particle in the biased disorder medium is investigated in this paper. Based on the mean first passage time (MFPT) theory, the analytical approximate expression of effective diffusion coefficient of a particle in the biased disorder potential is obtained. The results show that the effective diffusion of a particle in the biased disorder potential is significantly enhanced. We explain the enhancement mechanism by using the wave packet broadening of probability density distribution function. In addition, we propose the concepts of effective kinetic temperature and effective friction, and further find that the effective diffusion behavior of a particle strongly depends on the biased force.
-
Keywords:
- disorder /
- random correlation potential /
- diffusion enhancement
[1] Su Y, Ma X G, Lai P, Tong P 2017 Soft Matter 13 4773Google Scholar
[2] Lindenberg K, Sancho J M, Khoury M, Lacasta A M 2012 Fluctuation Noise Lett. 11 1240004Google Scholar
[3] Zwanzig R 1988 Proc. Natl. Acad. Sci. U.S.A. 85 2029Google Scholar
[4] Lifson S, Jackson J L 1962 J. Chem. Phys. 36 2410Google Scholar
[5] Longobardi L, Massarotti D, Rotoli G, Stornaiuolo D, Papari G, Kawakami A, Pepe G P, Barone A, Tafuri F 2011 Phys. Rev. B 84 184504Google Scholar
[6] Fulde P, Pietronero L, Schneider W R, Strässler S 1975 Phys. Rev. Lett. 35 1776Google Scholar
[7] Kurrer C, Schulten K 1995 Phys. Rev. E 51 6213Google Scholar
[8] Reimann P 2002 Phys. Rep. 361 57Google Scholar
[9] Lee S H, Grier D G 2006 Phys. Rev. Lett. 96 190601Google Scholar
[10] Blickle V, Speck T, Seifert U, Bechinger C 2007 Phys. Rev. E 75 060101Google Scholar
[11] Schiavoni M, Sanchez-Palencia L, Renzoni F, Grynberg G 2003 Phys. Rev. Lett. 90 094101Google Scholar
[12] Lü K, Bao J D 2007 Phys. Rev. E 76 061119Google Scholar
[13] Shi X Y, Bao J D 2019 Physica A 514 203Google Scholar
[14] Gleeson J P, Sancho J M, Lacasta A M, Lindenberg K 2006 Phys. Rev. E 73 041102Google Scholar
[15] Khoury M, Lacasta A M, Sancho J M, Lindenber K 2011 Phys. Rev. Lett. 106 090602Google Scholar
[16] Slutsky M, Kardar M, Mirny L A 2004 Phys. Rev. E 69 061903Google Scholar
[17] Bouchaud J P, Georges A 1990 Phys. Rep. 195 127Google Scholar
[18] Hänggi P, Talkner P, Borkovec M 1990 Rev. Mod. Phys. 62 251Google Scholar
[19] Hanes R D L, Dalle-Ferrier C, Schmiedeberg M, Jenkins M C, Egelhaaf S U 2012 Soft Matter 8 2714Google Scholar
[20] Harris S J, Timmons A, Baker D R, Monroe C 2010 Chem. Phys. Lett. 485 265Google Scholar
[21] Sieminskas L, Ferguson M, Zerda T W, Couch E 1997 J. Sol-Gel Sci. Technol. 8 1105Google Scholar
[22] Kafri K, Lubensky D K, Nelson D R 2004 Biophys. J. 86 3373Google Scholar
[23] Smith P, Morrison I E G, Wilson K M, Fernandez N, Cherry R J 1999 Biophys. J. 76 3331Google Scholar
[24] Hyeon C, Thirumalai D 2003 Proc. Natl. Acad. Sci. U.S.A. 100 10249Google Scholar
[25] Reimann P, Van den Broeck C, Linke H, Hänggi P, Rub J M, Perez-Madrid A 2001 Phys. Rev. Lett. 87 010602Google Scholar
[26] Reimann P, Van den Broeck C, Linke H, Hänggi P, Rub J M, Perez-Madrid A 2002 Phys. Rev. E 65 031104Google Scholar
[27] Evstigneev M, Zvyagolskaya O, Bleil S, Eichhorn R, Bechinger C, Reimann P 2008 Phys. Rev. E 77 041107Google Scholar
[28] Lindner B 2010 New J. Phys. 12 063026Google Scholar
[29] Simon M S, Sancho J M, Lacasta A M 2012 Fluctuation Noise Lett. 11 1250026Google Scholar
[30] Simon M S, Sancho J M, Lindenberg K 2013 Phys. Rev. E 88 062105Google Scholar
[31] 包景东 2009 经典和量子耗散系统的随机模拟方法 (北京: 科学出版社) 第111页
Bao J D 2009 Random Simulation Method of Classical and Quantum Dissipation System (Beijing: Science Press) p111 (in Chinese)
[32] Hu M, Bao J D 2018 Phys. Rev. E 97 062143Google Scholar
[33] Bao J D, Liu J 2013 Phys. Rev. E 88 022153Google Scholar
[34] Reimann P, Eichhorn R 2008 Phys. Rev. Lett. 101 180601Google Scholar
[35] Nixon G I, Slater G W 1996 Phys. Rev. E 53 4969Google Scholar
[36] Yeh D C, Huntington H B 1984 Phys. Rev. Lett. 53 1469Google Scholar
[37] Coh S, Gannett W, Zettl A, Cohen M L, Louie S G 2013 Phys. Rev. Lett. 110 185901Google Scholar
[38] Berkovich R, Garcia-Manes S, Urbakh M, Klafter J, Fernandez J M 2010 Biophys. J. 98 2692Google Scholar
[39] Smith S B, Cui Y J, Bustamante C 1996 Science 271 795Google Scholar
[40] Liphardt J, Onoa B, Smith S B, Tinoco Jr. I, Bustamante C 2001 Science 292 733Google Scholar
-
图 2 偏压随机势中粒子的有效扩散系数
$ D_{\rm eff} $ 随$ \tilde{F} $ 的变化. 这里比较了OU-RCP和OU的导数RCP中的结果. 内图: 继续增大$ \tilde{F} $ , OU的导数RCP对应的绿色方块曲线的变化趋势. 参数选取为$ \tilde{\lambda} = 0.5 $ ,$ \tilde{D} = 0.1 $ Fig. 2. Dependence of the effective diffusion coefficient
$ D_{\rm eff} $ on the biased force$ \tilde{F} $ in$ \tilde{V}_{\rm br} $ . Here, the results of OU-RCP and OU’s derivative RCP are compared. Illustration: The trend of the green square curve when continuing to increase$ \tilde{F} $ . The parameters used are$ \tilde{\lambda} = 0.5 $ ,$ \tilde{D} = 0.1 $ .图 3 分别叠加OU-RCP, OU的导数RCP的偏压随机势中粒子的概率密度分布函数. 内图: 叠加OU-RCP, OU的导数RCP的偏压随机势
$ V_{\rm br} $ 的示意图. 参数选取为$ \tilde{\lambda} = 0.5 $ ,$ \tilde{D} = 0.1 $ ,$ \tilde{F} = 10.0 $ Fig. 3. The PDF of a particle in
$ V_{\rm br} $ , the OU-RCP and OU’s derivative RCP are considered. Illustration: the schematic diagram of$ V_{\rm br} $ . The parameters used are$\tilde{\lambda} = $ $ 0.5$ ,$ \tilde{D} = 0.1 $ ,$ \tilde{F} = 10.0 $ 图 4 3种势
$ \tilde{V}_{\rm br} $ ,$ \tilde{V}_{\rm bpr} $ 和$ \tilde{V}_{\rm bp} $ 中粒子的有效扩散系数$ D_{\rm eff} $ 作为偏压力$ \tilde{F} $ 的函数. 比较了解析和模拟结果. 参数选取为$ \tilde{\lambda} = 0.5 $ ,$ \tilde{D} = 0.1 $ Fig. 4. The effective diffusion coefficient
$ D_{\rm eff} $ of a particle as a function of the biased force$ \tilde{F} $ in$ \tilde{V}_{\rm br} $ ,$ \tilde{V}_{\rm bpr} $ and$ \tilde{V}_{\rm bp} $ . The analytical result and simulation result are compared. The parameters used are$ \tilde{\lambda} = 0.5 $ ,$ \tilde{D} = 0.1 $ .图 5
$ \tilde{F} = 1.0 $ 时,$ \tilde{V}_{\rm bp} $ ,$ \tilde{V}_{\rm br} $ 及$ \tilde{V}_{\rm bpr} $ 中粒子的概率密度分布函数($(\rm a)—(\rm c)$ ); (d)$ \tilde{F} = 1.7 $ (图4的红线加三角形曲线的最大值对应的偏压力)时,$ \tilde{V}_{\rm bpr} $ 中粒子的概率密度分布函数. 内图:$ \tilde{F} = 1.0 $ 时的$ \tilde{V}_{\rm br} $ ,$ \tilde{V}_{\rm bpr} $ 示意图. 参数选取为$ \tilde{\lambda} = 0.5 $ ,$ \tilde{D} = 0.1 $ Fig. 5. The PDF corresponding to
$ \tilde{V}_{\rm bp} $ ,$ \tilde{V}_{\rm br} $ and$ \tilde{V}_{\rm bpr} $ for$ \tilde{F} = 1.0 $ ((a)–(c)); (d) the PDF of particle in$ \tilde{V}_{\rm bpr} $ for$ \tilde{F} = 1.7 $ (the optimal biased force for$ \tilde{V}_{\rm bpr} $ in Fig. 4). Illustration: the schematic diagram of$ \tilde{V}_{\rm br} $ ,$ \tilde{V}_{\rm bpr} $ for$ \tilde{F} = 1.0 $ . The parameters used are$ \tilde{\lambda} = 0.5 $ ,$ \tilde{D} = 0.1 $ .表 1 3种势结构下粒子的有效动力学温度
$k_{\rm B}T^*$ 及有效阻尼$\gamma^*$ 随偏压力的变化Table 1. The effective kinetic temperature
$k_{\rm B}T^*$ and effective friction$\gamma^*$ of a particle under the three potential structures change with the biased force.$\tilde F=0$ 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 偏压周期势 $k_{\rm B}T^*$
$\gamma^*$0.20
95.120.21
4.110.45
0.470.42
1.060.32
1.480.28
1.30.25
1.20.24
1.170.23
1.09偏压周期随机势 $k_{\rm B}T^*$
$\gamma^*$0.20
360.320.21
200.620.22
8.560.36
0.221.09
0.060.62
0.070.32
0.840.31
0.600.23
1.31偏压随机势 $k_{\rm B}T^*$
$\gamma^*$0.20
77.430.22
10.280.28
0.830.62
0.131.09
0.080.34
0.090.25
1.210.26
0.670.27
1.30 -
[1] Su Y, Ma X G, Lai P, Tong P 2017 Soft Matter 13 4773Google Scholar
[2] Lindenberg K, Sancho J M, Khoury M, Lacasta A M 2012 Fluctuation Noise Lett. 11 1240004Google Scholar
[3] Zwanzig R 1988 Proc. Natl. Acad. Sci. U.S.A. 85 2029Google Scholar
[4] Lifson S, Jackson J L 1962 J. Chem. Phys. 36 2410Google Scholar
[5] Longobardi L, Massarotti D, Rotoli G, Stornaiuolo D, Papari G, Kawakami A, Pepe G P, Barone A, Tafuri F 2011 Phys. Rev. B 84 184504Google Scholar
[6] Fulde P, Pietronero L, Schneider W R, Strässler S 1975 Phys. Rev. Lett. 35 1776Google Scholar
[7] Kurrer C, Schulten K 1995 Phys. Rev. E 51 6213Google Scholar
[8] Reimann P 2002 Phys. Rep. 361 57Google Scholar
[9] Lee S H, Grier D G 2006 Phys. Rev. Lett. 96 190601Google Scholar
[10] Blickle V, Speck T, Seifert U, Bechinger C 2007 Phys. Rev. E 75 060101Google Scholar
[11] Schiavoni M, Sanchez-Palencia L, Renzoni F, Grynberg G 2003 Phys. Rev. Lett. 90 094101Google Scholar
[12] Lü K, Bao J D 2007 Phys. Rev. E 76 061119Google Scholar
[13] Shi X Y, Bao J D 2019 Physica A 514 203Google Scholar
[14] Gleeson J P, Sancho J M, Lacasta A M, Lindenberg K 2006 Phys. Rev. E 73 041102Google Scholar
[15] Khoury M, Lacasta A M, Sancho J M, Lindenber K 2011 Phys. Rev. Lett. 106 090602Google Scholar
[16] Slutsky M, Kardar M, Mirny L A 2004 Phys. Rev. E 69 061903Google Scholar
[17] Bouchaud J P, Georges A 1990 Phys. Rep. 195 127Google Scholar
[18] Hänggi P, Talkner P, Borkovec M 1990 Rev. Mod. Phys. 62 251Google Scholar
[19] Hanes R D L, Dalle-Ferrier C, Schmiedeberg M, Jenkins M C, Egelhaaf S U 2012 Soft Matter 8 2714Google Scholar
[20] Harris S J, Timmons A, Baker D R, Monroe C 2010 Chem. Phys. Lett. 485 265Google Scholar
[21] Sieminskas L, Ferguson M, Zerda T W, Couch E 1997 J. Sol-Gel Sci. Technol. 8 1105Google Scholar
[22] Kafri K, Lubensky D K, Nelson D R 2004 Biophys. J. 86 3373Google Scholar
[23] Smith P, Morrison I E G, Wilson K M, Fernandez N, Cherry R J 1999 Biophys. J. 76 3331Google Scholar
[24] Hyeon C, Thirumalai D 2003 Proc. Natl. Acad. Sci. U.S.A. 100 10249Google Scholar
[25] Reimann P, Van den Broeck C, Linke H, Hänggi P, Rub J M, Perez-Madrid A 2001 Phys. Rev. Lett. 87 010602Google Scholar
[26] Reimann P, Van den Broeck C, Linke H, Hänggi P, Rub J M, Perez-Madrid A 2002 Phys. Rev. E 65 031104Google Scholar
[27] Evstigneev M, Zvyagolskaya O, Bleil S, Eichhorn R, Bechinger C, Reimann P 2008 Phys. Rev. E 77 041107Google Scholar
[28] Lindner B 2010 New J. Phys. 12 063026Google Scholar
[29] Simon M S, Sancho J M, Lacasta A M 2012 Fluctuation Noise Lett. 11 1250026Google Scholar
[30] Simon M S, Sancho J M, Lindenberg K 2013 Phys. Rev. E 88 062105Google Scholar
[31] 包景东 2009 经典和量子耗散系统的随机模拟方法 (北京: 科学出版社) 第111页
Bao J D 2009 Random Simulation Method of Classical and Quantum Dissipation System (Beijing: Science Press) p111 (in Chinese)
[32] Hu M, Bao J D 2018 Phys. Rev. E 97 062143Google Scholar
[33] Bao J D, Liu J 2013 Phys. Rev. E 88 022153Google Scholar
[34] Reimann P, Eichhorn R 2008 Phys. Rev. Lett. 101 180601Google Scholar
[35] Nixon G I, Slater G W 1996 Phys. Rev. E 53 4969Google Scholar
[36] Yeh D C, Huntington H B 1984 Phys. Rev. Lett. 53 1469Google Scholar
[37] Coh S, Gannett W, Zettl A, Cohen M L, Louie S G 2013 Phys. Rev. Lett. 110 185901Google Scholar
[38] Berkovich R, Garcia-Manes S, Urbakh M, Klafter J, Fernandez J M 2010 Biophys. J. 98 2692Google Scholar
[39] Smith S B, Cui Y J, Bustamante C 1996 Science 271 795Google Scholar
[40] Liphardt J, Onoa B, Smith S B, Tinoco Jr. I, Bustamante C 2001 Science 292 733Google Scholar
计量
- 文章访问数: 4364
- PDF下载量: 40
- 被引次数: 0