-
The sound field in the melt processed by 20 kHz ultrasonic to fabricate CNT-AZ91D is investigated by numerical simulation. Firstly, the distribution of sound pressure in the AZ91D melt is calculated by the finite element method after the model of the sound filed of the ultrasonic processing has been built. The simulation results show that a radial sound field forms under the ultrasonic probe, which means that the sound pressure decreases with increasing distance from the sound source. After the sound field is revealed, we study the ultrasonic cavitation in the AZ91D melt with a single-bubbly-change model and examine the bubble change rule under different sound pressures by solving the Rayleigh-Plesset equation. The relationship between sound pressure amplitude and the ultrasonic cavitation in the melt is also discovered. The higher the sound pressure amplitude, the smaller the threshold radius for the bubble collapse is, and thus the ultrasonic cavitation in AZ91 melt happens more easily. Secondly, the sound fields of the melt with different immersed depths of the ultrasonic probe are calculated. The results show the optimal immersed depth is about 30 mm for the same crucible size used in the present study. Furthermore, the corresponding optimal immersed depth can be calculated for different crucible sizes or different melts by the present numerical method, which is important for the practical ultrasonic processing. After analyzing the calculated results for sound field and the cavitation rule of in the AZ91D synthetically, we find that the volume of the effective cavitation zone rapidly increases with the smaller ultrasonic power and then rises almost linearly with the ultrasonic power larger than 500 W. Finally, to verify the simulation method of the sound field, the contrast study between the simulation and experiment of ultrasonic processing using glycerol-water solution is performed. The simulation result of the sound field in glycerol-water solution is similar to that in AZ91D melt. The highest sound pressure occurs near the end face of ultrasonic probe, while the experimental observation shows that the strongest cavitation also happens near the end face of ultrasonic probe, which indicates that the highest sound pressure occurs in the zone.
-
Keywords:
- ultrasonic processing /
- sound field /
- cavitation /
- numerical simulation
[1] Demczyk B G, Wang Y M, Cumings J, Hetman M, Han W, Zettl A, Ritchie R O 2002 Mat. Sci. Eng. A: Struct. 334 173
[2] Paramsothy M, Chan J, Kwok R, Gupta M 2011 Compos. Part. A: Appl. S. 42 180
[3] Paramsothy M, Tan X H, Chan J, Kwok R, Gupta M 2013 Mater. Design 45 15
[4] Carreño-Morelli E, Yang J, Coutrau E, Hernadi K, Seo J W, Bonjour C, Forró L, Schaller R 2004 Phys. Status Solidi A 201 R53
[5] Shimizu Y, Miki S, Itoh I, Todoroki H, Hosono T, Sakaki K, Hayashi T, Kim Y A, Endo M, Morimoto S, Koide A 2008 Scripta Mater. 58 267
[6] Lan J, Yang Y, Li X C 2004 Mat. Sci. Eng. A: Struct. 386 284
[7] Liu S Y, Gao F P, Zhang Q Y, Zhu X, Li W Z 2010 Trans. Nonferr. Metal. Soc. 20 1222
[8] Li C D, Wang X J, Liu W Q, Wu K, Shi H L, Ding C, Hu X S, Zheng M Y 2014 Mat. Sci. Eng. A: Struct. 597 264
[9] Li C D, Wang X J, Liu W Q, Shi H L, Ding C, Hu X S, Zheng M Y, Wu K 2014 Mater. Design 58 204
[10] Tudela I, Sáez V, Esclapez M D, Díez-García M I, Bonete P, González-García J 2014 Ultrason. Sonochem. 21 909
[11] Saez V, Frcas-Ferrer A, Iniesta J, González-García J, Aldaz Z, Riera E 2005 Ultrason. Sonochem. 12 59
[12] Klíma J, Frias-Ferrer A, González-García J, Ludvík J, Sáez V, Iniesta J 2007 Ultrason. Sonochem. 14 19
[13] Shao Z W, Le Q C, Cui J Z, Zhang Z Q 2010 Trans. Nonferr. Metal. Soc. 20 s382
[14] Shao Z W, Le Q C, Zhang Z Q, Cui J Z 2011 Trans. Nonferr. Metal. Soc. 21 2476
[15] Wang C H, Cheng J C 2013 Chin. Phys. B 22 014304
[16] Daemi M, Taeibi-Rahni M, Massah H 2015 Chin. Phys. B 24 024302
[17] Blairs S 2006 J. Colloid. Interf. Sci. 302 312
[18] Takamichi I D, Roderick I L G (translated by Xian A P, Wang L W) 2005 The Physical Properties of Liquid Metals (Beijing: Science Press) pp50-74 (in Chinese) [Takamichi I D, Roderick I L G著, 冼爱平, 王连文 译 2005 液态金属的物理性能(北京: 科学出版社)第50-74页]
[19] Keene B J 1993 Int. Mater. Rev. 38 157
[20] Lighthill J 2010 Waves in Fluids Reprint (Beijing: Beijing World Publishing Corporation) pp11-17
[21] Rienstra S W, Hirschberg A 2014 An Introduction to Acoustics (Eindhoven: Eindhoven University of Technology) pp65-67
[22] Babuška I, Ihlenburg F, Paik E T, Sauter S A 1995 Comput. Method Appl. M. 128 325
[23] Ihlenburg F, Babuška I 1995 Comput. Math. Appl. 30 9
[24] Noltingk B E, Neppiras E A
[25] Hilgenfeldt S, Brenner M P, Grossmann S, Lohse Detlef 1998 J. Fluid Mech. 365 171
[26] Du G H, Zhu Z M, Xi X F 2012 Fundamentals of acoustics (the third edition) (Nanjing: Nanjing University Press) pp223-230 (in Chinese) [杜功焕, 朱哲民, 袭秀芳 2012 声学基础 (第三版) (南京: 南京大学出版社)第223-230页]
[27] Zhang H W, Li Y X 2007 Acta Phy. Sin. 56 4864 (in Chinese) [张华伟, 李言祥 2007 物理学报 56 4864]
[28] Glycerine Producers' Association 1963 Physical Properties of Glycerine and Its Solutions (Glycerine: Glycerine Producers' Association) pp3-24
-
[1] Demczyk B G, Wang Y M, Cumings J, Hetman M, Han W, Zettl A, Ritchie R O 2002 Mat. Sci. Eng. A: Struct. 334 173
[2] Paramsothy M, Chan J, Kwok R, Gupta M 2011 Compos. Part. A: Appl. S. 42 180
[3] Paramsothy M, Tan X H, Chan J, Kwok R, Gupta M 2013 Mater. Design 45 15
[4] Carreño-Morelli E, Yang J, Coutrau E, Hernadi K, Seo J W, Bonjour C, Forró L, Schaller R 2004 Phys. Status Solidi A 201 R53
[5] Shimizu Y, Miki S, Itoh I, Todoroki H, Hosono T, Sakaki K, Hayashi T, Kim Y A, Endo M, Morimoto S, Koide A 2008 Scripta Mater. 58 267
[6] Lan J, Yang Y, Li X C 2004 Mat. Sci. Eng. A: Struct. 386 284
[7] Liu S Y, Gao F P, Zhang Q Y, Zhu X, Li W Z 2010 Trans. Nonferr. Metal. Soc. 20 1222
[8] Li C D, Wang X J, Liu W Q, Wu K, Shi H L, Ding C, Hu X S, Zheng M Y 2014 Mat. Sci. Eng. A: Struct. 597 264
[9] Li C D, Wang X J, Liu W Q, Shi H L, Ding C, Hu X S, Zheng M Y, Wu K 2014 Mater. Design 58 204
[10] Tudela I, Sáez V, Esclapez M D, Díez-García M I, Bonete P, González-García J 2014 Ultrason. Sonochem. 21 909
[11] Saez V, Frcas-Ferrer A, Iniesta J, González-García J, Aldaz Z, Riera E 2005 Ultrason. Sonochem. 12 59
[12] Klíma J, Frias-Ferrer A, González-García J, Ludvík J, Sáez V, Iniesta J 2007 Ultrason. Sonochem. 14 19
[13] Shao Z W, Le Q C, Cui J Z, Zhang Z Q 2010 Trans. Nonferr. Metal. Soc. 20 s382
[14] Shao Z W, Le Q C, Zhang Z Q, Cui J Z 2011 Trans. Nonferr. Metal. Soc. 21 2476
[15] Wang C H, Cheng J C 2013 Chin. Phys. B 22 014304
[16] Daemi M, Taeibi-Rahni M, Massah H 2015 Chin. Phys. B 24 024302
[17] Blairs S 2006 J. Colloid. Interf. Sci. 302 312
[18] Takamichi I D, Roderick I L G (translated by Xian A P, Wang L W) 2005 The Physical Properties of Liquid Metals (Beijing: Science Press) pp50-74 (in Chinese) [Takamichi I D, Roderick I L G著, 冼爱平, 王连文 译 2005 液态金属的物理性能(北京: 科学出版社)第50-74页]
[19] Keene B J 1993 Int. Mater. Rev. 38 157
[20] Lighthill J 2010 Waves in Fluids Reprint (Beijing: Beijing World Publishing Corporation) pp11-17
[21] Rienstra S W, Hirschberg A 2014 An Introduction to Acoustics (Eindhoven: Eindhoven University of Technology) pp65-67
[22] Babuška I, Ihlenburg F, Paik E T, Sauter S A 1995 Comput. Method Appl. M. 128 325
[23] Ihlenburg F, Babuška I 1995 Comput. Math. Appl. 30 9
[24] Noltingk B E, Neppiras E A
[25] Hilgenfeldt S, Brenner M P, Grossmann S, Lohse Detlef 1998 J. Fluid Mech. 365 171
[26] Du G H, Zhu Z M, Xi X F 2012 Fundamentals of acoustics (the third edition) (Nanjing: Nanjing University Press) pp223-230 (in Chinese) [杜功焕, 朱哲民, 袭秀芳 2012 声学基础 (第三版) (南京: 南京大学出版社)第223-230页]
[27] Zhang H W, Li Y X 2007 Acta Phy. Sin. 56 4864 (in Chinese) [张华伟, 李言祥 2007 物理学报 56 4864]
[28] Glycerine Producers' Association 1963 Physical Properties of Glycerine and Its Solutions (Glycerine: Glycerine Producers' Association) pp3-24
Catalog
Metrics
- Abstract views: 6165
- PDF Downloads: 244
- Cited By: 0