-
Ultrasound thrombolysis primarily relies on transient shockwaves and microjets from collapsing cavitation bubbles to mechanically disrupt thrombus structures. While demonstrating clinical potential, its efficacy remains limited by low cavitation energy transfer efficiency and unpredictable tissue damage, stemming from incomplete understanding of single bubble dynamics and the synergistic mechanisms of multi-bubble interactions.
This study introduces a hyper-viscoelastic constitutive model incorporating blood clot mechanics to analyze stress accumulation under sequential microbubble impacts. A gas-liquid-solid coupled multi-physics model quantifies bubble collapse dynamics near thrombi, integrating structural damping terms to represent energy dissipation during fluid-structure interactions. Parametric analysis reveals that jet impact intensity positively correlates with thrombus mass and ultrasound amplitude, but inversely relates to dimensionless distance, ultrasound frequency, and initial bubble radius.
The proposed rate-dependent Ogden-Prony model effectively captures thrombus behaviors under transient impacts, including strain hardening, rate-dependent strengthening, and stress relaxation. Sequential jet impacts induce cumulative stress through strain hardening, with multi-bubble synergy achieving significantly higher stresses than single-bubble impact. Optimal bubble radius distributions enable amplified normal/shear stresses within thrombi – double bubble impact sequences generate 6.02 MPa maximum normal stress, surpassing thrombus tensile strength, versus 1.45 MPa from single bubble impact. Key quantitative relationships between bubble cluster parameters, dimensionless distance, thrombus mass, and stress accumulation provide optimization guidelines for ultrasound thrombolysis. Notably, controlled multi-bubble jet impact sequences with attenuated pressure peaks demonstrate enhanced therapeutic potential through cumulative mechanical effects rather than single high-intensity impacts.-
Keywords:
- Ultrasonic thrombolysis /
- Cavitation effect /
- Jet sequence /
- Stress accumulation
-
[1] Millett E R C, Peters S A E, Woodward M 2018 Br. Med. J. 363 k4247
[2] GBD 2017 Causes of Death Collaborators (CORPORATE) 2018 Lancet 392 1736
[3] Ren S T, Long L H, Wang M, Li Y P, Qin H, Zhang H, Jing B B, Li Y X, Zang W J, Wang B, Shen X L 2012 J. Thromb. Thrombolysis 33 74
[4] Alexandrov A V, Köhrmann M, Soinne L, Tsivgoulis G, Barreto A D, Demchuk A M, Sharma V K, Mikulik R, Muir K W, Brandt G, Alleman J, Grotta J C, Levi C R, Molina C A, Saqqur M, Mavridis D, Psaltopoulou T, Vosko M, Fiebach J B, Mandava P, Kent T A, Alexandrov A W, Schellinger P D 2019 Lancet Neurol. 18 338
[5] Xia Q Q, Liu L 2019 Adv. Cardiovasc. Dis. 40 564 (in Chinese) [夏青青,刘俐 2019 心血管病学进展 40 564]
[6] Papadopoulos N, Kyriacou P A, Damianou C 2017 J. Stroke Cerebrovasc. 26 2447
[7] Bußmann A, Riahi F, Gökce B, Adami S, Barcikowski S, Adams N A 2023 Phys. Fluids 35 016115
[8] Iga Y, Sasaki H 2023 Phys. Fluids 35 023312
[9] Bokman G T, Biasiori P L, Lukić B, Bourquard C, Meyer D W, Rack A, Supponen O 2023 Phys. Fluids 35 013322
[10] Li S, Zhang A M, Han R 2018 Phys. Fluids 30 121703
[11] Reese H, Ohl S W, Ohl C D 2023 Phys. Fluids 35 076122
[12] Ren Z, Han H, Zeng H, Sun C, Tagawa Y, Zuo Z, Liu S 2023 J. Fluid Mech. 976 A11
[13] Turangan C K, Ong G P, Klaseboer E, Khoo B C 2006 J. Appl. Phys. 100 054910
[14] Brujan E A, Zhang A M, Liu Y L, Ogasawara T, Takahira H 2022 J. Fluid Mech. 948 A6
[15] Andrews E D, Rivas D F, Peters I R 2023 J. Fluid Mech. 962 A11
[16] Li S, Zhang A M, Han R, Liu Y Q 2017 Phys. Fluids 29 092102
[17] Wang D X, Naranmandula 2018 Acta Phys. Sin. 67 201 (in Chinese) [王德鑫,那仁满都拉 2018 物理学报 67 201]
[18] Zhang L L, Chen W Z, Wu Y R, Shen Y, Zhao G Y 2021 Chin. Phys. B 30 104301
[19] Shen Y, Zhang L, Wu Y, Chen W 2021 Ultrason. Sonochem. 73 105535
[20] Fong S W, Adhikari D, Klaseboer E, Khoo B C 2009 Exp. Fluids 46 705
[21] Bremond N, Arora M, Ohl C D, Lohse D 2005 Phys. Fluids 17 091111
[22] Lauterborn W, Hentschel W 1985 Ultrasonics 23 260
[23] Zhang A M, Yao X L 2008 Chin. Phys. B 17 927
[24] Xu K, Xu L, Zhou G P 2021 Acta Phys. Sin. 70 91 (in Chinese) [徐珂,许龙,周光平 2021 物理学报 70 91]
[25] Qin D, Lei S, Zhang B, Liu Y, Tian J, Ji X, Yang H 2024 Ultrason. Sonochem. 104 106808
[26] Xu L, Wang Y 2023 Acta Phys. Sin. 72 153 (in Chinese) [许龙,汪尧 2023 物理学报 72 153]
[27] Wang X, Chen W, Zhou M, Zhang Z, Zhang L 2022 Ultrason. Sonochem. 84 105952
[28] Zhang L X, Wen Z Q, Shao X M 2013 Acta Mech. Sin. 45 861 (in Chinese) [张凌新,闻仲卿,邵雪明 2013 力学学报 45 861]
[29] Terasaki S, Kiyama A, Kang D, Tomita Y, Sato K 2024 Phys. Fluids 36 012115
[30] Hong S, Son G 2023 Ultrason. Sonochem. 92 106252
[31] Sankin G N, Yuan F, Zhong P 2010 Phys. Rev. Lett. 105 078101
[32] Lauer E, Hu X Y, Hickel S, Adams N A 2012 Phys. Fluids 24 052104
[33] Chahine G L, Hsiao C T 2015 Interface Focus 5 20150016
[34] Ochiai N, Ishimoto J 2017 J. Fluid Mech. 818 562
[35] Ochiai N, Ishimoto J 2020 Ultrason. Sonochem. 61 104818
[36] Hosseinkhah N, Hynynen K 2012 Phys. Med. Biol. 57 785
[37] Ri J, Pang N, Bai S, Xu J, Xu L, Ri S, Yao Y, Greenwald S E 2023 Phys. Fluids 35 011904
[38] Chetty A, Kovacs J, Sulyok Z, Meszaros A, Fekete J, Domjan A, Szilagyi A, Vargha V 2013 Express Polym. Lett. 7 95
[39] Ma X, Huang B, Zhao X, Wang Y, Chang Q, Qiu S, Fu X, Wang G 2018 Ultrason. Sonochem. 43 80
[40] Cahalane R M E, de Vries J J, de Maat M P M, van Gaalen K, van Beusekom H M, van der Lugt A, Fereidoonnezhad B, Akyildiz A C, Gijsen F J H 2023 Ann. Biomed. Eng. 51 1759
[41] Kim T H, Kim H Y 2014 J. Fluid Mech. 750 355
[42] Vyas N, Dehghani H, Sammons R L, Wang Q X, Leppinen D M, Walmsley A D 2017 Ultrasonics 81 66
[43] Liu Y, Zheng Y, Reddy A S, Gebrezgiabhier D, Davis E, Cockrum J, Gemmete J J, Chaudhary N, Griauzde J M, Pandey A S, Shih A J, Savastano L E 2021 J. Neurosurg. 134 893
[44] Maksudov F, Daraei A, Sesha A, Marx K A, Guthold M, Barsegov V 2021 Acta Biomater. 136 327
[45] Tomita Y, Shima A, Ohno T 1984 J. Appl. Phys. 56 125
Metrics
- Abstract views: 86
- PDF Downloads: 3
- Cited By: 0