Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical study on ultrasonic propagation and shock wave formation in fibrin clots dependent on concentration

MO Fan ZHANG Xiaomin ZHAO Zhipeng WU Qiong ZHENG Chaochao ZHANG Linlin ZHAO Libo CHENG Ke LIU Shudong TANG Ge

Citation:

Numerical study on ultrasonic propagation and shock wave formation in fibrin clots dependent on concentration

MO Fan, ZHANG Xiaomin, ZHAO Zhipeng, WU Qiong, ZHENG Chaochao, ZHANG Linlin, ZHAO Libo, CHENG Ke, LIU Shudong, TANG Ge
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Ultrasound thrombolysis stands out among various treatment methods due to its safety and high efficiency. While the cavitation and mechanical mechanisms underlying this technique are well-established, the impact of the concentration-dependent strain hardening properties of thrombotic biomaterials on ultrasound-induced shockwave effects remains a subject of considerable interest. Furthermore, the extremely short time window for effective clinical intervention necessitates precise spatial localization of rapidly formed shockwaves and determination of their energy thresholds for optimizing treatment protocols.
    Considering that the primary mechanical properties of blood clots are dominated by the fibrin network, their stress-strain relationship exhibits a pronounced dependence on fibrin concentration. A power-law constitutive equation capable of characterizing the progressive hardening characteristics of clots was proposed here, based on results obtained from quasi-static compression tests performed on clots with varying fibrin concentrations. By employing the wave speed alterations induced by strain-hardening characteristics, which were incorporated into a third-order nonlinear ultrasound propagation wave equation, the dynamic characteristics underlying shock wave formation during ultrasound propagation through clot media were examined via numerical simulations. Results revealed that the pronounced stress discontinuity preceding this process originated from a sudden displacement change caused by the clot's progressive hardening. To accurately pinpoint the initiation location, the Average Steepening Factor (ASF), based on threshold limitation, was employed for localization. However, this method was severely constrained by mesh convergence issues, and improvements in finite precision incurred exponential increases in computational time. In contrast, the Total Harmonic Distortion (THD), utilizing the extremum of frequency-domain energy for localization, demonstrated lower sensitivity to truncation errors and offered computational efficiency advantages. Parametric analysis indicated a maximum localization error of 2.55% between the two methods, with the peak stress determined by the THD criterion being significantly higher than that identified by the ASF method.
    Based on experimentally fitted constitutive equations for different concentrations, numerical simulations of wave propagation indicated that increasing fibrin concentration delayed the shockwave formation position by 91.7% and increased the peak stress by 60% according to the THD criterion, due to fibrin concentration increasing from 10 mg/mL to 35 mg/mL. Corresponding fitting formulas were derived. Through real-time THD feedback and acoustic field parameter regulation, a theoretical basis is provided for the rapid localization and flexible control of shockwave effects in clinical ultrasound thrombolysis.
  • [1]

    Chen C Y, Zhou L L, Ying J 2023 Chin. Modern Med. 30 27 (in Chinses) [陈春燕, 周兰兰, 应杰, 2023 中国当代医药 30 27]

    [2]

    Amuluru K, Nguyen J, Al-Mufti F, Denardo A, Scott J, Yavagal D, Sahlein D H 2022 J. Stroke Cerebrovasc. 31 106553

    [3]

    Nedelmann M, Eicke B M, Lierke E G, Heimann A, Kempski O, Hopf H C 2002 J. Ultras. Med. 21 649

    [4]

    Behrens S, Daffertshofer M, Spiegel D, Hennerici M 1999 Ultrasound Med. Biol. 25 269

    [5]

    Qian J, Xie W, Zhou X W, Tan J W, Wang Z B, Du Y H, Li Y H 2022 Acta Phys. Sin. 71 275 (in Chinese) [钱骏, 谢伟, 周小伟, 谭坚文, 王智彪, 杜永洪, 李雁浩, 2022 物理学报 71 275]

    [6]

    Chernysh I N, Everbach C E, Purohit P K, Weisel J W 2015 J. Thromb. Haemost. 13 601

    [7]

    Datta S, Coussios C-C, McAdory L E, Tan J, Porter T, De Courten-Myers G, Holland C K 2006 Ultrasound Med. Biol. 32 1257

    [8]

    Kagami S, Kanagawa T 2022 Ultrason. Sonochem. 88 105911

    [9]

    Xu L, Wang Y 2023 Acta Phys. Sin. 72 153 (in Chinese) [许龙, 汪尧, 2023 物理学报 72 153]

    [10]

    Wang X, Wang H, Wu M, Li L, Zhao B 2024 Ceram. Int. 50 42247

    [11]

    Meng B, Cao B N, Wan M, Wang C J, Shan D B 2019 Int. J. Mech. Sci. 157–158 609

    [12]

    Chen Z J, Zhang S Y, Zheng K 2010 Acta Phys. Sin. 59 4071 (in Chinese) [陈赵江, 张淑仪, 郑凯, 2010 物理学报 59 4071]

    [13]

    Zhao J, Su H, Wu C 2020 J. Mater. Res. Technol. 9 14895

    [14]

    Meng Y, Ma L, Jia W, Huang Z, Xie H, Ning F, Lei J 2024 J. Mater. Res. Technol. 28 2138

    [15]

    Johnson S, McCarthy R, Gilvarry M, McHugh P E, McGarry J P 2021 Ann. Biomed. Eng. 49 420

    [16]

    Piechocka I K, Bacabac R G, Potters M, MacKintosh F C, Koenderink G H 2010 Biophys. J. 98 2281

    [17]

    Ramanujam R K, Maksudov F, Litvinov R I, Nagaswami C, Weisel J W, Tutwiler V, Barsegov V 2023 Adv. Healthcare Mater. 12 2300096

    [18]

    Ariëns R A, Sharp A S, Duval C 2024 Haematol-hematol J. 110 21

    [19]

    Adzerikho I E, Mrochek A G, Minchenya V T, Dmitriev V V, Kulak A I 2011 Ultrasound Med. Biol. 37 1644

    [20]

    Adzerikho I, Kulak A, Rachok S, Minchenya V 2022 Ultrasound Med. Biol. 48 846

    [21]

    Tang J, Tang J, Liao Y, Bai L, Luo T, Xu Y, Liu Z 2024 Heliyon 10 e26624

    [22]

    Cherniavsky E A, Strakha I S, Adzerikho I E, Shkumatov V M 2011 BMC Biochem 12 60

    [23]

    Roohi R, Baroumand S, Hosseinie R, Ahmadi G 2021 Int. Commun. Heat Mass 120 105002

    [24]

    Purrington R D, Norton G V 2012 Math. Comput. Simulat. 82 1287

    [25]

    Sheng R, Zhang J 2022 Appl. Acoust. 195 108867

    [26]

    Ramos J I 2020 Int. J. Eng. Sci. 149 103226

    [27]

    Alarcón H, Galaz B, Espíndola D 2025 Ultrasonics 145 107469

    [28]

    Qu J 2025 Ultrasonics 151 107621

    [29]

    Muhlestein M B, Gee K L, Nielsen T B, Thomas D C 2013 J. Acoust. Soc. Am. 134 3981

    [30]

    Muhlestein M B, Gee K L, Neilsen T B, Thomas D C 2015 J. Acoust. Soc. Am. 137 640

    [31]

    Ren W, Xie W, Zhang Y, Yu H, Tian Z 2025 J. Comput. Phys. 523 113649

    [32]

    Nguyen N C, Van Heyningen R L, Vila-Pérez J, Peraire J 2024 J. Comput. Phys. 508 113005

    [33]

    Malkin R, Kappus B, Long B, Price A 2023 J. Sound Vib. 552 117644

    [34]

    Piechocka I K, Bacabac R G, Potters M, MacKintosh F C, Koenderink G H 2010 Biophys. J. 98 2281

    [35]

    Pattofatto S, Elnasri I, Zhao H, Tsitsiris H, Hild F, Girard Y 2007 J. Mech. Phys. Solids 55 2672

    [36]

    Zhao G, Liu S, Zhang C, Jin L, Yang Q 2022 Vacuum 197 110841

    [37]

    Norris A N 2024 Nonlinear Acoustics (Cham: Springer Nature Switzerland) p259

    [38]

    Thurston R N 1974 Mechanics of Solids (Berlin: Springer Verlag) p109

    [39]

    Wang L L 2005 Foundation of Stress Waves (Vol. 2) (Beijing: National Defense Industry Press) p7 (in Chinese) [王礼立 2005 应力波基础(第2版)(北京:国防工业出版社) 第7页]

    [40]

    Du G H 2001 Foundation of Acoustics (Vol. 2) (Jiangsu: Nanjing University Press) p479 (in Chinese) [杜功焕 2001 声学基础(第2版)(江苏:南京大学出版社) 第479页]

    [41]

    Xia L 2019 J. Acoust. Soc. Am. 146 1394

    [42]

    Niu H J 2017 Principles of Ultrasound and Applications in Biomedical Engineering (Vol. 2) (Shanghai: Shanghai Jiao Tong University Press) p11 (in Chinese) [牛金海 2017 超声原理及生物医学工程应用(第2版)(上海:上海交通大学出版社) 第11页]

    [43]

    Gong X F, Zhang D 2005 J. Appl. Acoust 24 208 (in Chinese) [龚秀芬, 章东, 2005 应用声学 24 208]

    [44]

    Tutwiler V, Maksudov F, Litvinov R I, Weisel J W, Barsegov V 2021 Acta Biomater. 131 355

    [45]

    Depalle B, Qin Z, Shefelbine S J, Buehler M J 2015 J. Mech. Behav. Biomed. Mater. 52 1

    [46]

    Sekkal W, Zaoui A, Benzerzour M, Abriak N 2016 Cem. Concr. Res. 87 45

  • [1] Jia Yuhao, Zhang Xiaomin, Zhao Zhipeng, Wu Qiong, Zhang Linlin. Numerical analysis of synergistic cavitation effect of multiple bubbles in ultrasound thrombolysis. Acta Physica Sinica, doi: 10.7498/aps.74.20250430
    [2] Wang Jin-Ling, Zhang Kun, Lin Ji, Li Hui-Jun. Generation and modulation of shock waves in two-dimensional polariton condensates. Acta Physica Sinica, doi: 10.7498/aps.73.20240229
    [3] Yang Wei-Ming, Duan Xiao-Xi, Zhang Chen, Li Yu-Long, Liu Hao, Guan Zan-Yang, Zhang Huan, Sun Liang, Dong Yun-Song, Yang Dong, Wang Zhe-Bin, Yang Jia-Min. Optimization and application of shock wave measurement technology for shock-timing experiments on small-scale capsules. Acta Physica Sinica, doi: 10.7498/aps.73.20232000
    [4] Wang Zhi-Huan, Jia Lei-Ming, He Zeng, Tian Zhou. Method of theoretically calculating spherical stress wave field in linear-hardening materials under impact load. Acta Physica Sinica, doi: 10.7498/aps.71.20210954
    [5] Wang Xiao-Feng, Tao Gang, Xu Ning, Wang Peng, Li Zhao, Wen Peng. Molecular dynamics analysis of shock wave-induced nanobubble collapse in water. Acta Physica Sinica, doi: 10.7498/aps.70.20210058
    [6] Ding Zhao-Nan, Yang Yi-Tao, Song Yin, Zhang Li-Qing, Gou Jie, Zhang Chong-Hong, Luo Guang-Nan. Hardening of reduced activation ferritic/martensitic steels under the irradiation of high-energy heavy-ion. Acta Physica Sinica, doi: 10.7498/aps.66.112501
    [7] He Min-Qing, Dong Quan-Li, Sheng Zheng-Ming, Zhang Jie. Shock wave amplification by shock wave self-generated magnetic field driven by laser and the external magnetic field. Acta Physica Sinica, doi: 10.7498/aps.64.105202
    [8] Wang Feng, Peng Xiao-Shi, Mei Lu-Sheng, Liu Shen-Ye, Jiang Xiao-Hua, Ding Yong-Kun. Shock timing experiment based on imaging velocity interferometer system for any reflector. Acta Physica Sinica, doi: 10.7498/aps.61.135201
    [9] Yu Yin, Wang Wen-Qiang, Yang Jia, Zhang You-Jun, Jiang Dong-Dong, He Hong-Liang. Mesoscopic picture of fracture in porous brittle material under shock wave compression. Acta Physica Sinica, doi: 10.7498/aps.61.048103
    [10] Wang Feng, Peng Xiao-Shi, Liu Shen-Ye, Jiang Xiao-Hua, Xu Tao, Ding Yong-Kun, Zhang Bao-Han. Shock experiment with sandwiched target in laser indirect-drive experiment. Acta Physica Sinica, doi: 10.7498/aps.60.115203
    [11] Wang Feng, Peng Xiao-Shi, Liu Shen-Ye, Jiang Xiao-Hua, Ding Yong-Kun. Shock timing experiment in polystyrene target based on imaging velocity interferometer system for any reflector. Acta Physica Sinica, doi: 10.7498/aps.60.085203
    [12] Chen Kai-Guo, Zhu Wen-Jun, Ma Wen, Deng Xiao-Liang, He Hong-Liang, Jing Fu-Qian. Propagation of shockwave in nanocrystalline copper: Molecular dynamics simulation. Acta Physica Sinica, doi: 10.7498/aps.59.1225
    [13] He Min-Qing, Dong Quan-Li, Sheng Zheng-Ming, Weng Su-Ming, Chen Min, Wu Hui-Chun, Zhang Jie. Ion acceleration by shock wave induced by laser plasma interaction. Acta Physica Sinica, doi: 10.7498/aps.58.363
    [14] Yu Yu-Ying, Tan Hua, Hu Jian-Bo, Dai Cheng-Da, Chen Da-Nian, Wang Huan-Ran. Effective shear modulus in shock-compressed aluminum. Acta Physica Sinica, doi: 10.7498/aps.57.2352
    [15] Jiang Dong-Dong, Du Jin-Mei, Gu Yan, Feng Yu-Jun. Resistivity of PZT 95/5 ferroelectric ceramic under shock wave compression. Acta Physica Sinica, doi: 10.7498/aps.57.566
    [16] Zhang Yi, Zheng Zhi-Yuan, Li Yu-Tong, Liu Feng, Li Han-Ming, Lu Xin, Zhang Jie. Collision process of two shockwaves. Acta Physica Sinica, doi: 10.7498/aps.56.5931
    [17] Bian Bao-Min, Yang Ling, Zhang Ping, Ji Yun-Jing, Li Zhen-Hua, Ni Xiao-Wu. General self-simulating motion mode of spherical strong shock waves in ideal gas. Acta Physica Sinica, doi: 10.7498/aps.55.4181
    [18] Gu Yong-Yu, Zhang Yong-Kang, Zhang Xing-Quan, Shi Jian-Guo. Theoretical study on the influence of the overlay on the pressure of laser shock wave in photomechanics. Acta Physica Sinica, doi: 10.7498/aps.55.5885
    [19] Cui Xin-Lin, Zhu Wen-Jun, Deng Xiao-Liang, Li Ying-Jun, He Hong-Liang. Molecular dynamic simulation of shock-induced phase transformation in single crystal iron with nano-void inclusion. Acta Physica Sinica, doi: 10.7498/aps.55.5545
    [20] GU YUAN, NI YUAN-LONG, WANG YONG-GANG, MAO CHU-SHENG, WU FENG-CHUN, WU JIANG, ZHU JIAN, WAN BING-GEN. EXPERIMENTAL OBSERVATION OF LASER DRIVEN HIGH PRESSURE SHOCK WAVES. Acta Physica Sinica, doi: 10.7498/aps.37.1690
Metrics
  • Abstract views:  102
  • PDF Downloads:  2
  • Cited By: 0
Publishing process
  • Available Online:  11 June 2025

/

返回文章
返回