Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of mechanical agitation on ultrasonic cavitation dynamics

Liu Jin-He Shen Zhuang-Zhi Lin Shu-Yu

Citation:

Effect of mechanical agitation on ultrasonic cavitation dynamics

Liu Jin-He, Shen Zhuang-Zhi, Lin Shu-Yu
PDF
HTML
Get Citation
  • In order to further investigate the effect of the vortex induced by mechanical agitation on the ultrasonic degradation rate of organic solution, with water used as a medium, the acoustic field distributions at different stirring speeds are simulated by using the simulation software COMSOL. The simulation of acoustic field distribution is divided into two steps. First, the flow field distribution in the cleaning tank is obtained by using the Navier-Stokes equation and the continuity equation under the corresponding boundary conditions. Next, the velocity and pressure in the flow field are substituted into the acoustic wave equation to obtain the acoustic field distribution. In addition, the instantaneous acoustic pressure obtained by simulation is fitted by Origin, and the fitting curve shows a good sinusoidal shape. Then, substituting the fitting function into the Keller-Miksis equation, the variations of radius of the cavitation bubble with time at different stirring speeds are obtained. Finally, the temperature of the cavitation bubble is calculated from the obtained radius. The results show that mechanical agitation increases the uniformity of acoustic field distribution and the amplitude of acoustic pressure, and that the bubble temperature is greatly enhanced due to the agitation. At the same time, it is also found that the internal temperature of the bubble first increases with the stirring speed increasing. When the stirring speed reaches 1500 r/min, the temperature begins to decrease with the stirring speed increasing. The temperature inside the cavitation bubble reflects the intensity of acoustic cavitation. The higher the temperature, the greater the intensity of acoustic cavitation will be. Therefore, it can be concluded that the acoustic cavitation intensity will decrease when the stirring speed is too high. Therefore, though mechanical agitation can improve the acoustic cavitation intensity, too high stirring speed can reduce the acoustic cavitation intensity. In order to verify the simulation results, the degradation of methylene blue is performed by ultrasound coupled with mechanical agitation, and the experimental results show that the degradation rate of the solution without mechanical stirring is lowest. The degradation rate of the solution increases with the stirring speed increasing. When the stirring speed reaches 1000 r/min, the degradation rate of the solution is the same as that at 600 r/min, and then decreases with the stirring speed increasing. It can be found that the experimental results are consistent with the simulation results. The simulation results not only theoretically explain why mechanical agitation can improve the ultrasonic degradation rate of organic solution, but also indicate that too high stirring speed can reduce the acoustic cavitation intensity, thus reducing the sonochemical reaction rate. Therefore, the results obtained in this work provide a new idea for further improving the ultrasonic degradation rate by mechanical agitation.
      Corresponding author: Shen Zhuang-Zhi, szz6@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674207, 11674206).
    [1]

    Mahamuni N N, Adewuyi A G 2010 Ultrason. Sonochem. 17 990Google Scholar

    [2]

    李宁, 闫家望 2021 中国资源综合利用 39 99Google Scholar

    Li N, Yan J W 2021 China Resources Comprehensive Utilization 39 99Google Scholar

    [3]

    Shimizu N, Ogino C, Dadjour M F, Murata T 2007 Ultrason. Sonochem. 14 184Google Scholar

    [4]

    Suslick K S, Didenko Y, Fang M M, et al. 1999 Phil. Trans. R. Soc. A 357 335Google Scholar

    [5]

    Suslick K S, Price G J 1999 Annu. Rev. Mater. Sci 29 295Google Scholar

    [6]

    Kobayashi D, Honma C, Suzuki A, Takahashi T, Matsumoto H, Kuroda C, Otake K, Shono A 2012 Ultrason. Sonochem. 19 745Google Scholar

    [7]

    Nikpassand M, Fekri L Z, Farokhian P 2016 Ultrason. Sonochem. 28 341Google Scholar

    [8]

    Shanei A, Shanei M M 2017 Ultrason. Sonochem. 34 45Google Scholar

    [9]

    Zhai W, Liu H M, Hong Z Y, Xie W J, Wei B 2017 Ultrason. Sonochem. 34 130Google Scholar

    [10]

    Jawale R H, Gogate P R 2018 Ultrason. Sonochem. 40 89Google Scholar

    [11]

    Kobayashi D, Honma C, Matsumoto H, Otake K, Shono A 2018 Open J. Acoust. 8 61Google Scholar

    [12]

    Kwedi-Nsah L M, Kobayashi T 2019 Ultrason. Sonochem. 52 69Google Scholar

    [13]

    Wang J, Wang Z, Wolfson J M, Pingtian G, Huang S D 2019 Ultrason. Sonochem. 55 273Google Scholar

    [14]

    Serna-Galvis E A, Montoya-Rodríguez D, Isaza-Pineda L, Ibáñez M, Hernández F, Moncayo-Lasso A, Torres-Palma R A 2019 Ultrason. Sonochem. 50 157Google Scholar

    [15]

    Fang Y, Hariu D, Yamamoto T, Komarov S 2019 Ultrason. Sonochem. 52 318Google Scholar

    [16]

    Shen Z Z 2020 Chin. Phys. B 29 014304Google Scholar

    [17]

    Lesko T, Colussi A G, Hoffmann M R 2006 Environ. Sci. Technol. 40 6818Google Scholar

    [18]

    Yasuda K, Matsuura K, Asakura1 Y, Koda S 2009 Jpn. J. Appl. Phys. 48 07GH04Google Scholar

    [19]

    Hatanaka S, Yasui K, Kozuka T, Tuziuti T, Mitome H 2006 Ultrasonics 44 e435Google Scholar

    [20]

    Kojima Y, Asakura Y, Sugiyama G, Koda S 2010 Ultrason. Sonochem. 17 978Google Scholar

    [21]

    Wood R J, Vévert C, Lee J, Bussemaker M J 2020 Ultrason. Sonochem. 63 104892Google Scholar

    [22]

    Nakui H, Okitsu K, Maeda Y, Nishimura R. 2007 J. Hazard. Mater. 146 636Google Scholar

    [23]

    Zhang X G, Hao C C, Ma C, Shen Z Z 2019 Ultrason. Sonochem. 58 104691Google Scholar

    [24]

    Yang Y, Yang J k, Zuo J L, Li Y, He S, Yang X, Zhang K 2011 Water Res. 45 3439Google Scholar

    [25]

    Pierce A D 1990 J. Acoust. Soc. Am. 87 2292Google Scholar

    [26]

    沈壮志, 林书玉 2011 物理学报 60 104302Google Scholar

    Shen Z Z, Lin S Y 2011 Acta Phys. Sin. 60 104302Google Scholar

    [27]

    Saez V, Frias-Fsrrer A, Iniesta J, Gonzalez J, Aldaz A, Riera E 2005 Ultrason. Sonochem. 12 59Google Scholar

    [28]

    Yasui K, Kozuka T, Tuziuti T, Towata A, Iida Y, King J, Macey P 2007 Ultrason. Sonochem. 14 605Google Scholar

    [29]

    Zhang Z B, Gao T T, Liu X Y, Li D W, Zhao J W, Lei Y Q, Wang Y K 2018 Ultrason. Sonochem. 42 787Google Scholar

    [30]

    Vanhille C 2016 Ultrason. Sonochem. 31 631Google Scholar

    [31]

    陈伟中 2014 声空化物理 (北京: 科学出版社)第160页

    Chen W Z 2014 Acoustic Cavitation Physics (Beijing: Science Press) p160 (in Chinese)

    [32]

    Liu L Y, Wen J J, Yang Y, Tian W 2013 Ultrason. Sonochem 20 696Google Scholar

    [33]

    杜功焕, 朱哲民, 龚秀芬 2012 声学基础 (南京: 南京大学出版社) 第137页

    Du G H, Zhu Z M, Gong X F 2012 Fundamentals of Acoustics (Nanjing: Nanjing University Press) p137 (in Chinese)

    [34]

    Berthet R, Astruc D Astruc D 2003 J. Comput. Phys. 190 64Google Scholar

    [35]

    Li Z W, Xu Z W, Zhao D G, Chen S, Yan J C 2021 Ultrason. Sonochem. 71 105356Google Scholar

  • 图 1  (a) 超声清洗槽模型的结构示意图; (b) 仿真模型的网格图

    Figure 1.  (a) Geometry and configurations of the cleaning tank; (b) the mesh used for simulations.

    图 2  不同搅拌速度下的声场分布图 (a) 0 r/min; (b) 300 r/min; (c) 600 r/min; (d) 1000 r/min; (e) 1500 r/min; (f) 2000 r/min

    Figure 2.  Acoustic pressure distribution at the stirring speed of various value: (a) 0 r/min; (b) 300 r/min; (c) 600 r/min; (d) 1000 r/min; (e) 1500 r/min; (f) 2000 r/min.

    图 3  驻波声场中波腹和波节的位置

    Figure 3.  The position of the peaks and troughs in the standing wave acoustic field.

    图 4  水槽内各个截面上声场分布图 (a) 0 r/min; (b) 300 r/min; (c) 600 r/min; (d)1000 r/min; (e) 1500 r/min; (f) 2000 r/min

    Figure 4.  Acoustic pressure distribution at the stirring speed of various value: (a) 0 r/min; (b) 300 r/min; (c) 600 r/min; (d) 1000 r/min; (e) 1500 r/min; (f) 2000 r/min.

    图 5  不同搅拌速度下, 提取点处的声压随时间变化图 (a) 0 r/min; (b) 300 r/min; (c) 600 r/min; (d) 1000 r/min; (e) 1500 r/min; (f) 2000 r/min

    Figure 5.  Acoustic pressure versus time for extracted point at the stirring speed of various value: (a) 0 r/min; (b) 300 r/min; (c) 600 r/min; (d) 1000 r/min; (e) 1500 r/min; (f) 2000 r/min.

    图 6  不同搅拌速度下, 空化泡半径随时间变化图 (a) 0 r/min; (b) 300 r/min; (c) 600 r/min; (d) 1000 r/min; (e) 1500 r/min; (f) 2000 r/min

    Figure 6.  The radius of cavitation bubble at the stirring speed of (a) 0 r/min; (b) 300 r/min; (c) 600 r/min; (d) 1000 r/min; (e) 1500 r/min; (f) 2000 r/min.

    图 7  不同搅拌速度下, 空化泡内部的温度随时间变化图 (a) 0 r/min; (b) 300 r/min; (c) 600 r/min; (d) 1000 r/min; (e) 1500 r/min; (f) 2000 r/min

    Figure 7.  Internal temperature of bubble under distinct stirring speeds in the plane of various value: (a) 0 r/min; (b) 300 r/min; (c) 600 r/min; (d) 1000 r/min; (e) 1500 r/min; (f) 2000 r/min.

    图 8  (a) 实验装置图; (b) 不同搅拌速度下溶液的降解率

    Figure 8.  (a) The experimental apparatus; (b) degradation rate of solution at different stirring speeds.

    表 1  材料参数.

    Table 1.  Material parameters.

    材料$ {\rho _0} $/($ {\rm{kg}} \cdot {{\rm{m}}^{{\rm{ - 3}}}} $)$ {c_0} $/(m s–1)$ \mu $/(Pa s)
    100015001.01 × 10–3
    空气1.293401.79 × 10–5
    DownLoad: CSV
  • [1]

    Mahamuni N N, Adewuyi A G 2010 Ultrason. Sonochem. 17 990Google Scholar

    [2]

    李宁, 闫家望 2021 中国资源综合利用 39 99Google Scholar

    Li N, Yan J W 2021 China Resources Comprehensive Utilization 39 99Google Scholar

    [3]

    Shimizu N, Ogino C, Dadjour M F, Murata T 2007 Ultrason. Sonochem. 14 184Google Scholar

    [4]

    Suslick K S, Didenko Y, Fang M M, et al. 1999 Phil. Trans. R. Soc. A 357 335Google Scholar

    [5]

    Suslick K S, Price G J 1999 Annu. Rev. Mater. Sci 29 295Google Scholar

    [6]

    Kobayashi D, Honma C, Suzuki A, Takahashi T, Matsumoto H, Kuroda C, Otake K, Shono A 2012 Ultrason. Sonochem. 19 745Google Scholar

    [7]

    Nikpassand M, Fekri L Z, Farokhian P 2016 Ultrason. Sonochem. 28 341Google Scholar

    [8]

    Shanei A, Shanei M M 2017 Ultrason. Sonochem. 34 45Google Scholar

    [9]

    Zhai W, Liu H M, Hong Z Y, Xie W J, Wei B 2017 Ultrason. Sonochem. 34 130Google Scholar

    [10]

    Jawale R H, Gogate P R 2018 Ultrason. Sonochem. 40 89Google Scholar

    [11]

    Kobayashi D, Honma C, Matsumoto H, Otake K, Shono A 2018 Open J. Acoust. 8 61Google Scholar

    [12]

    Kwedi-Nsah L M, Kobayashi T 2019 Ultrason. Sonochem. 52 69Google Scholar

    [13]

    Wang J, Wang Z, Wolfson J M, Pingtian G, Huang S D 2019 Ultrason. Sonochem. 55 273Google Scholar

    [14]

    Serna-Galvis E A, Montoya-Rodríguez D, Isaza-Pineda L, Ibáñez M, Hernández F, Moncayo-Lasso A, Torres-Palma R A 2019 Ultrason. Sonochem. 50 157Google Scholar

    [15]

    Fang Y, Hariu D, Yamamoto T, Komarov S 2019 Ultrason. Sonochem. 52 318Google Scholar

    [16]

    Shen Z Z 2020 Chin. Phys. B 29 014304Google Scholar

    [17]

    Lesko T, Colussi A G, Hoffmann M R 2006 Environ. Sci. Technol. 40 6818Google Scholar

    [18]

    Yasuda K, Matsuura K, Asakura1 Y, Koda S 2009 Jpn. J. Appl. Phys. 48 07GH04Google Scholar

    [19]

    Hatanaka S, Yasui K, Kozuka T, Tuziuti T, Mitome H 2006 Ultrasonics 44 e435Google Scholar

    [20]

    Kojima Y, Asakura Y, Sugiyama G, Koda S 2010 Ultrason. Sonochem. 17 978Google Scholar

    [21]

    Wood R J, Vévert C, Lee J, Bussemaker M J 2020 Ultrason. Sonochem. 63 104892Google Scholar

    [22]

    Nakui H, Okitsu K, Maeda Y, Nishimura R. 2007 J. Hazard. Mater. 146 636Google Scholar

    [23]

    Zhang X G, Hao C C, Ma C, Shen Z Z 2019 Ultrason. Sonochem. 58 104691Google Scholar

    [24]

    Yang Y, Yang J k, Zuo J L, Li Y, He S, Yang X, Zhang K 2011 Water Res. 45 3439Google Scholar

    [25]

    Pierce A D 1990 J. Acoust. Soc. Am. 87 2292Google Scholar

    [26]

    沈壮志, 林书玉 2011 物理学报 60 104302Google Scholar

    Shen Z Z, Lin S Y 2011 Acta Phys. Sin. 60 104302Google Scholar

    [27]

    Saez V, Frias-Fsrrer A, Iniesta J, Gonzalez J, Aldaz A, Riera E 2005 Ultrason. Sonochem. 12 59Google Scholar

    [28]

    Yasui K, Kozuka T, Tuziuti T, Towata A, Iida Y, King J, Macey P 2007 Ultrason. Sonochem. 14 605Google Scholar

    [29]

    Zhang Z B, Gao T T, Liu X Y, Li D W, Zhao J W, Lei Y Q, Wang Y K 2018 Ultrason. Sonochem. 42 787Google Scholar

    [30]

    Vanhille C 2016 Ultrason. Sonochem. 31 631Google Scholar

    [31]

    陈伟中 2014 声空化物理 (北京: 科学出版社)第160页

    Chen W Z 2014 Acoustic Cavitation Physics (Beijing: Science Press) p160 (in Chinese)

    [32]

    Liu L Y, Wen J J, Yang Y, Tian W 2013 Ultrason. Sonochem 20 696Google Scholar

    [33]

    杜功焕, 朱哲民, 龚秀芬 2012 声学基础 (南京: 南京大学出版社) 第137页

    Du G H, Zhu Z M, Gong X F 2012 Fundamentals of Acoustics (Nanjing: Nanjing University Press) p137 (in Chinese)

    [34]

    Berthet R, Astruc D Astruc D 2003 J. Comput. Phys. 190 64Google Scholar

    [35]

    Li Z W, Xu Z W, Zhao D G, Chen S, Yan J C 2021 Ultrason. Sonochem. 71 105356Google Scholar

  • [1] Qi Hai-Dong, Wang Jing, Chen Zhong-Jun, Wu Zhong-Hua, Song Xi-Ping. Influence of temperature on lattice constants of martensite and ferrite. Acta Physica Sinica, 2022, 71(9): 098301. doi: 10.7498/aps.71.20211954
    [2] Wang Yu-Hao, Liu Jian-Guo, Xu Liang, Liu Wen-Qing, Song Qing-li, Jin Ling, Xu Han-Yang. Quantitative analysis of accuracy of concentration inversion under different temperature and pressure. Acta Physica Sinica, 2021, 70(7): 073201. doi: 10.7498/aps.70.20201672
    [3] Qu Guang-Ning, Fan Feng-Xian, Zhang Si-Hong, Su Ming-Xu. Interaction between monodisperse fine particles in a standing wave acoustic field. Acta Physica Sinica, 2020, 69(6): 064704. doi: 10.7498/aps.69.20191681
    [4] Wu Wen-Hua, Zhai Wei, Hu Hai-Bao, Wei Bing-Bo. Acoustic field and convection pattern within liquid material during ultrasonic processing. Acta Physica Sinica, 2017, 66(19): 194303. doi: 10.7498/aps.66.194303
    [5] Liu Jun-Chi, Li Hong-Wen, Wang Jian-Li, Liu Xin-Yue, Ma Xin-Xue. A temperature and emissivity separation algorithm based on maximum entropy estimation of alpha spectrum's scaling and translation. Acta Physica Sinica, 2015, 64(17): 175205. doi: 10.7498/aps.64.175205
    [6] Zhao Fu-Ze, Zhu Shao-Zhen, Feng Xiao-Hui, Yang Yuan-Sheng. Sound field simulation of ultrasonic processing to fabricate carbon nanotubes reinforced AZ91D composites. Acta Physica Sinica, 2015, 64(14): 144302. doi: 10.7498/aps.64.144302
    [7] Shen Zhuang-Zhi, Wu Sheng-Ju. Dynamic behavior of a cavitation bubble in acoustic field and electric field. Acta Physica Sinica, 2012, 61(12): 124301. doi: 10.7498/aps.61.124301
    [8] Li Yan, Fu Hai-Wei, Shao Min, Li Xiao-Li. Temperature characteristic of photonic crystals resonant cavitycomposed of GaAs pillars with graphite lattice. Acta Physica Sinica, 2011, 60(7): 074219. doi: 10.7498/aps.60.074219
    [9] Geng Xi-Zhao, Hasi Wu-Li, Guo Xiang-Yu, Li Xing, Lin Dian-Yang, He Wei-Ming, Fan Rui-Qing, Lü Zhi-Wei. Study on measuring the kinematic viscosity of liquid medium based on the energy reflectivity of SBS. Acta Physica Sinica, 2011, 60(5): 054208. doi: 10.7498/aps.60.054208
    [10] Wang Xin-Feng, Xiong Xian-Chao, Gao Min-Zhong. Experimental method of measuring sound velocity using ultrasonic flowmeter. Acta Physica Sinica, 2011, 60(11): 114303. doi: 10.7498/aps.60.114303
    [11] Zhan Xiang-Lin, Sun Fang, Zeng Zhou-Mo, Wang Xiao-Yuan, Jin Shi-Jiu. Acoustic field characteristics of ultrasonic linear phased array for an interface condition. Acta Physica Sinica, 2011, 60(9): 094301. doi: 10.7498/aps.60.094301
    [12] Cheng Zheng-Fu, Long Xiao-Xia, Zheng Rui-Lun. Influence of temperature on the Bose condensation of photons and excitons in optic microcavity. Acta Physica Sinica, 2010, 59(12): 8377-8384. doi: 10.7498/aps.59.8377
    [13] Han Ru, Fan Xiao-Ya, Yang Yin-Tang. Temperature-dependent Raman property of n-type SiC. Acta Physica Sinica, 2010, 59(6): 4261-4266. doi: 10.7498/aps.59.4261
    [14] Wang Ya-Zhen, Huang Ping, Gong Zhong-Liang. Study on the influence of temperature on interfacial micro-friction. Acta Physica Sinica, 2010, 59(8): 5635-5640. doi: 10.7498/aps.59.5635
    [15] Li Rong-Hua, Meng Wei-Min, Peng Ying-Quan, Ma Chao-Zhu, Wang Run-Sheng, Xie Hong-Wei, Wang Ying, Ye Zao-Chen. Investigation on the effect of cathode work function and exciton generation rate on the open-circuit voltage of single layer organic solar cell with Schottky contact. Acta Physica Sinica, 2010, 59(3): 2126-2130. doi: 10.7498/aps.59.2126
    [16] Chen Pi-Heng, Ao Bing-Yun, Li Ju, Li Rong, Shen Liang. Simulation of He behavior in bcc Fe on heating. Acta Physica Sinica, 2009, 58(4): 2605-2611. doi: 10.7498/aps.58.2605
    [17] Shi Juan, Li Jian, Qiu Bing, Li Hua-Bing. Lattice Boltzmann simulation of particles moving in a vortex flow. Acta Physica Sinica, 2009, 58(8): 5174-5178. doi: 10.7498/aps.58.5174
    [18] Tang Li-Guo, Xu Xiao-Mei, Liu Sheng-Xing. Theoretical and numerical investigations of the acoustic field excited by submarine explosion. Acta Physica Sinica, 2008, 57(7): 4251-4257. doi: 10.7498/aps.57.4251
    [19] Chen Guo-Qing, Wu Ya-Min, Lu Xing-Zhong. Temperature effects of optical bistability of metal/dielectric granular composites. Acta Physica Sinica, 2007, 56(2): 1146-1151. doi: 10.7498/aps.56.1146
    [20] Shen Jie, Ning Rui-Peng, Liu Ying, Li Geng-Ying. A method for reducing eddy current induced by gradient coils. Acta Physica Sinica, 2006, 55(6): 3060-3066. doi: 10.7498/aps.55.3060
Metrics
  • Abstract views:  4295
  • PDF Downloads:  89
  • Cited By: 0
Publishing process
  • Received Date:  03 July 2021
  • Accepted Date:  24 July 2021
  • Available Online:  15 August 2021
  • Published Online:  20 November 2021

/

返回文章
返回