搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

II型射电暴射电增强与太阳高能粒子事件关系的统计

周坤论 丁留贯 钱天麒 朱聪 王智伟 封莉

引用本文:
Citation:

II型射电暴射电增强与太阳高能粒子事件关系的统计

周坤论, 丁留贯, 钱天麒, 朱聪, 王智伟, 封莉

Statistical analysis of the relationship between type II radio enhancement and solar energetic particle event

Zhou Kun-Lun, Ding Liu-Guan, Qian Tian-Qi, Zhu Cong, Wang Zhi-Wei, Feng Li
PDF
HTML
导出引用
  • 本文基于Learmonth等地面台站和Wind/WAVES, STEREO/SWAVES等卫星射电观测资料, 筛选了第24个太阳活动周2007年1月至2015年12月期间82个米波-十米百米波(meter-decahectometric, M-DH)、十米-百米波(deca-hectometric, DH)II型射电暴事件, 其中39个射电增强事件和43个非射电增强事件. 研究结果显示: 1)射电增强事件的日冕物质抛射(coronal mass ejection, CME)速度、质量、动能和耀斑等级普遍高于无射电增强事件的; 无论有无射电增强, 产生太阳高能粒子(solar energetic particle, SEP)事件的CME速度、质量和动能均明显大于无SEP事件的CME. 2)特征时间分析显示高能粒子起始释放时间普遍早于射电增强开始时间, 由此表明射电增强不是导致高能粒子事件产生的直接原因. 3)无论有无射电增强, SEP事件伴随的II型射电暴开始高度略低于无SEP事件的; 而II型射电暴结束高度, 产生SEP的事件明显高于无SEP的事件; 伴随射电增强的II型射电暴结束高度显著大于无射电增强事件, 即表明有射电增强事件中的激波更强且可持续到更高高度. 4)当快速CME完全扫过另一个先行CME时, CME相互作用更易产生射电增强, 而是否产生SEP无明显差异. 本文结果表明, 射电增强是CME激波与其他CME相互作用而增强的表现, 增强的激波可能增强粒子加速过程而更易产生大的SEP事件, 但射电增强并非产生SEP事件的直接原因.
    In this paper, we investigated 82 type-II radio burst events detected by some ground stations Learmonth, YNAO, and BIRS and spacecraft Wind/WAVES, STEREO/WAVES from January 2007 to December 2015. And we identified 39 events associated with radio enhancement and 43 events without enhancement. We found that: 1) The CME velocity, mass, kinetic energy and flare class with respect to type II radio enhancement events were generally higher than that of no enhancement events, and these properties in the solar energetic particle (SEP) events were significantly higher than that no SEP event, regardless of whether radio enhancement or not. 2) As shown in the characteristic time analysis, the initial release time of SEPs is generally earlier than the start time of radio enhancement, so we can the radio enhancement is only as a signature of the shock enhancement rather than the direct generator of SEP events. 3) Whether radio enhancement or not, the onset height of type IIs associated with SEP event is slightly lower than that of event without SEP. For the absence height, the SEP events are significantly higher than the no-SEP events, and that the absence height of enhancement events are also distinctly higher than that non-enhancement events, which reveals that the enhanced CME shock characterized by enhanced radio burst can keep propagating to more higher or further space. 4) When one fast and wide CME fully sweeps over another slow and narrow preceding CME, CME interaction can more easily generate radio enhancement, but no distinctive difference between SEP events and non-SEP events. So the results of this paper reveal that radio enhancement can be regarded as a manifestation of CME shock becoming strong during interacting with other CME, and the enhanced shock can accelerate the particle to generate large SEP events more easily. However, the type II radio enhancement is not the direct producer or causer that generate large SEP event.
      通信作者: 丁留贯, dlg@nuist.edu.cn
      Corresponding author: Ding Liu-Guan, dlg@nuist.edu.cn
    [1]

    Vršnak B, Cliver E W 2008 Sol. Phys. 253 215Google Scholar

    [2]

    Kahler S W 2001 J. Geophys. Res. 106 20947Google Scholar

    [3]

    Reames D V 1999 Space. Sci. Rev. 90 413Google Scholar

    [4]

    Cliver E W, Kahler S W 2004 Astrophys. J. 605 902Google Scholar

    [5]

    Gopalswamy N, Xie H, Yashiro S, Akiyama S, Mäkelä P, Usoskin I G 2012 Space. Sci. Rev. 171 23Google Scholar

    [6]

    Ding L G, Jiang Y, Li G 2016 Astrophys. J. 818 169Google Scholar

    [7]

    Vainio R, Agueda N, Aran A, Lario D 2007 Space Weather. Springer Netherlands. pp 27–37

    [8]

    Cane H V, von Rosenvinge T T, Cohen C M S, Mewaldt R A 2003 Geophys. Res. Lett. 30 8017Google Scholar

    [9]

    Li C, Tang Y H, Dai Y, Fang C, Vial C 2007 Astron. Astrophys. 472 283Google Scholar

    [10]

    Le G M, Zhang X F 2017 Res. Astron. Astrophys. 17 123Google Scholar

    [11]

    Le G M, Li C, Zhang X F 2017 Res. Astron. Astrophys. 17 73Google Scholar

    [12]

    Wu S S, Qin G 2018 J. Geophys. Res-Space Phys. 123 76Google Scholar

    [13]

    Zhao M X, Le G M, Chi Y T 2018 Res. Astron. Astrophys. 18 74Google Scholar

    [14]

    Zhao M X, Le G M 2020 Res. Astron. Astrophys. 20 37Google Scholar

    [15]

    Mason G M, Mazur J E, Dwyer J R 1999 Astrophys. J. 525 133Google Scholar

    [16]

    Mason G M, Dwyer J R, Mazur J E 2000 Astrophys. J. 545 157Google Scholar

    [17]

    Gopalswamy N, Yashiro S, Michałek G, Kaiser M L, Howard R A, Reames D V, Leske R, von Rosenvinge T 2002 Astrophys. J. 572 103Google Scholar

    [18]

    Gopalswamy N, Yashiro S, Krucker S, Stenborg G, Howard R A 2004 J. Geophys. Res-Space. 109 12105Google Scholar

    [19]

    Li G, Moore R, Mewaldt R A, Zhao L, Labrador A W 2012 Space. Sci. Rev. 171 141Google Scholar

    [20]

    Shen C L, Wang Y M, Ye P Z, Zhao X P, Gui B, Wang S 2007 Astrophys. J. 670 849Google Scholar

    [21]

    Gopalswamy N, Aguilar-Rodriguez E, Yashiro S, Nunes S, Kaiser M L, Howard R A 2005 J. Geophys. Res. 110 12Google Scholar

    [22]

    Winter L M, Ledbetter K 2015 Astrophys. J. 809 105Google Scholar

    [23]

    Gopalswamy N, Yashiro S, Kaiser M L, Howard R A, Bougeret J L 2001 Astrophys. J. 548 91Google Scholar

    [24]

    Ding L G, Li G, Jiang Y, Le G M, Shen C L, Wang Y M, Chen Y, Xu F, Gu B, Zhang Y N 2014 Astrophys. J. 793 35Google Scholar

    [25]

    Ding L G, Wang Z W, Feng L, Li G, Jiang Y 2019 Res. Astron. Astrophys. 19 1Google Scholar

    [26]

    Al-Hamadani F, Pohjolainen S, Valtonen E 2017 Sol. Phys. 292 127Google Scholar

    [27]

    Brueckner G E, Howard R A, Koomen M J, Korendyke C M, Michels D J, Moses J D, Socker D G, Dere K P, Lamy P L, Llebaria A, Bout M V, Schwenn R, Simnett G M, Bedford D K, Eyles C J 1995 Sol. Phys. 162 357Google Scholar

    [28]

    Müller-Mellin R, Kunow H, Fleißner V, Pehlke E, Rode E, Röschmann N, Scharmberg C, Sierks H, Rusznyak P, Mckenna-Lawlor S, Elendt I, Sequeiros J, Meziat D, Sanchez S, Medina J, del Peral L, Witte M, Marsden R, Henrion J 1995 Sol. Phys. 162 483Google Scholar

    [29]

    von Rosenvinge T T, Reames D V, Baker R, Hawk J, Nolan J T, Ryan L, Shuman S, Wortman K A, Mewaldt R A, Cummings A C, Cook W R, Labrador A W, Leske R A, Wiedenbeck M E 2008 Space. Sci. Rev. 136 391Google Scholar

    [30]

    王智伟, 丁留贯, 周坤论, 乐贵明 2018 地球物理学报 61 3515Google Scholar

    Wang Z W, Ding L G, Zhou K L, Le G M 2018 Chin. J. Geophys. 61 3515Google Scholar

    [31]

    Tylka A J, Cohen C M S, Dietrich W F, Krucker S, McGuire R E, Mewaldt R A, Ng C K, Reames D V, Share G H 2003 The 28 th International Cosmic Ray Conference 6 3305

    [32]

    Kim R S, Cho K S, Lee J, Bong S C, Park Y D 2014 J. Geophys. Res-Space. 119 9419Google Scholar

    [33]

    乐贵明, 唐玉华, 韩延本 2007 科学通报 52 2461Google Scholar

    Le G M, Tang Y H, Han Y B 2007 Chin. Sci. Bull. 52 2461Google Scholar

    [34]

    Newkirk G Jr 1961 Astrophys. J. 133 983Google Scholar

    [35]

    Vršnak B, Magdalenić J, Zlobec P 2004 Astron. Astrophys. 413 753Google Scholar

    [36]

    Saito K, Poland A I, Munro R H 1977 Sol. Phys. 55 121Google Scholar

    [37]

    Gopalswamy N, S Yashiro 2011 Astrophys. J. 736 17Google Scholar

    [38]

    Mäkelä P, Gopalswamy N, Akiyama S, Xie H, Yashiro S 2015 Astrophys. J. 806 13Google Scholar

    [39]

    Kocharov L, Pohjolainen S, Mishev A, Reiner M J, Lee J, Laitinen T, Didkovsky L V, Pizzo V J, Kim R, Klassen A, Karlicky M, Cho K S, Gary D E, Usoskin I, Valtonen E, Vainio R 2017 Astrophys. J. 839 79Google Scholar

    [40]

    Temmer M, Vršnak B, Rollett T, Bein B, Koning D, Liu Y, Bosman E, Davies J A, Most C, Zic T, Veronig A M, Bothmer V, Harrison R, Nitta N, Bisi M, Flor O, Eastwood J, Odstrcil D, Forsyth R 2012 Astrophys. J. 749 57Google Scholar

    [41]

    Ding L G, Jiang Y, Zhao L L, Li G 2013 Astrophys. J. 763 30Google Scholar

    [42]

    Martínez Oliveros J C, Raftery C L, Bain H M, Liu Y, Krupar V, Bale S, Krucker S 2012 Astrophys. J. 748 66Google Scholar

    [43]

    周坤论, 丁留贯, 王智伟, 封莉 2019 物理学报 68 13Google Scholar

    Zhou K L, Ding L G, Wang Z W, Feng L 2019 Acta Phys. Sin. 68 13Google Scholar

    [44]

    Bemporad A, Mancuso S 2013 J. Adv. Res. 4 287Google Scholar

    [45]

    Sheeley Jr N R, Hakala W N, Wang Y M 2000 J. Geophys. Res. 105 5081Google Scholar

    [46]

    Vourlidas A, Wu S T, Wang A H, Subramanian P, Howard R A 2003 J. Adv. Res. 598 1392Google Scholar

    [47]

    Cho K S, Lee J, Moon Y J, Dryer M, Bong S C, Kim Y H, Park Y D 2007 Astron. Astrophys. 461 1121Google Scholar

    [48]

    Cho K S, Bong S C, Kim Y H, Moon Y J, Dryer M, Shanmugaraju A, Lee J, Park Y D 2008 Astron. Astrophys. 491 873Google Scholar

    [49]

    Feng S W, Chen Y, Kong X L, Li G, Song H Q, Feng X S, Ying Liu 2012 Astrophys. J. 753 21Google Scholar

  • 图 1  (a, c)有射电增强和无射电增强的II型射电暴频谱图; (b, d) CME1, CME2及拟合激波高度-时间变化图

    Fig. 1.  (a, c) Spectrum diagram of a type II radio burst with and without enhancement; (b, d) the height-time profile of CME1, CME2 and its shock.

    图 2  CME速度、质量、动能和耀斑统计直方图. 蓝色为有射电增强事件(Group I), 红色为无射电增强事件(Group II)

    Fig. 2.  Histogram of CME velocity, mass, kinetic energy and flare class. Blue denotes radio enhancement events (Group I), and red denotes no enhancement events (Group II).

    图 3  SEP事件峰值通量统计直方图

    Fig. 3.  Statistical histogram of SEP peak intensity.

    图 4  CME速度、质量、动能与SEP事件关联的统计直方图. 蓝色是有SEP事件, 红色是无SEP事件

    Fig. 4.  Histogram of CME velocity, mass, kinetic energy with SEP/No SEP, and blue denotes the events with SEP, and red denotes the events without SEP.

    图 5  以SEP事件起始时刻作为参考点0, 各时间点与参考点之差的统计直方图. II型射电暴起始(T1红色)和结束时刻(T2蓝色)、射电增强起始(T3紫色)和结束时刻(T4绿色)、SEP峰值时刻(T5灰色)

    Fig. 5.  Uses the starting moment of the SEP events as the reference point (0), histogram of the difference between type II radio burst start /stop time(T1/T2), radio enhancement start/stop(T3/T4), SEP stop time(T5) and the reference point respectively.

    图 6  射电增强事件 (a, b) II型射电暴开始、结束高度在不同速度区间内的均值分布; (c, d) II型射电暴开始、结束高度的统计直方图

    Fig. 6.  For radio enhancement events, (a, b) the bin-average distribution of the type IIs start/stop height in different speed intervals; (c, d) the histogram of the type IIs start/stop height.

    图 7  无射电增强事件 (a), (b) II型射电暴起始、结束高度在不同速度区间内的均值分布; (c), (d)II型射电暴起始、结束高度的统计直方图

    Fig. 7.  For no radio enhancement events: (a, b) The bin-average distribution of the type IIs start/stop height in different speed intervals; (c, d) the histogram of the type IIs start/stop height.

    图 8  射电增强事件 (a)非增强区域拟合密度模型倍数N1; (b)增强区域拟合密度模型倍数N2; (c) N2与N1差值的统计直方图

    Fig. 8.  Histogram of N1, N2, N2-N1. N1 and N2 are the multiples of coronal density model used in the fitting of type II radio burst and its enhancement episode respectively.

    图 9  CME1和CME2 速度、角宽、重叠角宽的统计直方图

    Fig. 9.  Histogram of CME1 and CME2 with speed, angular width and overlap width.

  • [1]

    Vršnak B, Cliver E W 2008 Sol. Phys. 253 215Google Scholar

    [2]

    Kahler S W 2001 J. Geophys. Res. 106 20947Google Scholar

    [3]

    Reames D V 1999 Space. Sci. Rev. 90 413Google Scholar

    [4]

    Cliver E W, Kahler S W 2004 Astrophys. J. 605 902Google Scholar

    [5]

    Gopalswamy N, Xie H, Yashiro S, Akiyama S, Mäkelä P, Usoskin I G 2012 Space. Sci. Rev. 171 23Google Scholar

    [6]

    Ding L G, Jiang Y, Li G 2016 Astrophys. J. 818 169Google Scholar

    [7]

    Vainio R, Agueda N, Aran A, Lario D 2007 Space Weather. Springer Netherlands. pp 27–37

    [8]

    Cane H V, von Rosenvinge T T, Cohen C M S, Mewaldt R A 2003 Geophys. Res. Lett. 30 8017Google Scholar

    [9]

    Li C, Tang Y H, Dai Y, Fang C, Vial C 2007 Astron. Astrophys. 472 283Google Scholar

    [10]

    Le G M, Zhang X F 2017 Res. Astron. Astrophys. 17 123Google Scholar

    [11]

    Le G M, Li C, Zhang X F 2017 Res. Astron. Astrophys. 17 73Google Scholar

    [12]

    Wu S S, Qin G 2018 J. Geophys. Res-Space Phys. 123 76Google Scholar

    [13]

    Zhao M X, Le G M, Chi Y T 2018 Res. Astron. Astrophys. 18 74Google Scholar

    [14]

    Zhao M X, Le G M 2020 Res. Astron. Astrophys. 20 37Google Scholar

    [15]

    Mason G M, Mazur J E, Dwyer J R 1999 Astrophys. J. 525 133Google Scholar

    [16]

    Mason G M, Dwyer J R, Mazur J E 2000 Astrophys. J. 545 157Google Scholar

    [17]

    Gopalswamy N, Yashiro S, Michałek G, Kaiser M L, Howard R A, Reames D V, Leske R, von Rosenvinge T 2002 Astrophys. J. 572 103Google Scholar

    [18]

    Gopalswamy N, Yashiro S, Krucker S, Stenborg G, Howard R A 2004 J. Geophys. Res-Space. 109 12105Google Scholar

    [19]

    Li G, Moore R, Mewaldt R A, Zhao L, Labrador A W 2012 Space. Sci. Rev. 171 141Google Scholar

    [20]

    Shen C L, Wang Y M, Ye P Z, Zhao X P, Gui B, Wang S 2007 Astrophys. J. 670 849Google Scholar

    [21]

    Gopalswamy N, Aguilar-Rodriguez E, Yashiro S, Nunes S, Kaiser M L, Howard R A 2005 J. Geophys. Res. 110 12Google Scholar

    [22]

    Winter L M, Ledbetter K 2015 Astrophys. J. 809 105Google Scholar

    [23]

    Gopalswamy N, Yashiro S, Kaiser M L, Howard R A, Bougeret J L 2001 Astrophys. J. 548 91Google Scholar

    [24]

    Ding L G, Li G, Jiang Y, Le G M, Shen C L, Wang Y M, Chen Y, Xu F, Gu B, Zhang Y N 2014 Astrophys. J. 793 35Google Scholar

    [25]

    Ding L G, Wang Z W, Feng L, Li G, Jiang Y 2019 Res. Astron. Astrophys. 19 1Google Scholar

    [26]

    Al-Hamadani F, Pohjolainen S, Valtonen E 2017 Sol. Phys. 292 127Google Scholar

    [27]

    Brueckner G E, Howard R A, Koomen M J, Korendyke C M, Michels D J, Moses J D, Socker D G, Dere K P, Lamy P L, Llebaria A, Bout M V, Schwenn R, Simnett G M, Bedford D K, Eyles C J 1995 Sol. Phys. 162 357Google Scholar

    [28]

    Müller-Mellin R, Kunow H, Fleißner V, Pehlke E, Rode E, Röschmann N, Scharmberg C, Sierks H, Rusznyak P, Mckenna-Lawlor S, Elendt I, Sequeiros J, Meziat D, Sanchez S, Medina J, del Peral L, Witte M, Marsden R, Henrion J 1995 Sol. Phys. 162 483Google Scholar

    [29]

    von Rosenvinge T T, Reames D V, Baker R, Hawk J, Nolan J T, Ryan L, Shuman S, Wortman K A, Mewaldt R A, Cummings A C, Cook W R, Labrador A W, Leske R A, Wiedenbeck M E 2008 Space. Sci. Rev. 136 391Google Scholar

    [30]

    王智伟, 丁留贯, 周坤论, 乐贵明 2018 地球物理学报 61 3515Google Scholar

    Wang Z W, Ding L G, Zhou K L, Le G M 2018 Chin. J. Geophys. 61 3515Google Scholar

    [31]

    Tylka A J, Cohen C M S, Dietrich W F, Krucker S, McGuire R E, Mewaldt R A, Ng C K, Reames D V, Share G H 2003 The 28 th International Cosmic Ray Conference 6 3305

    [32]

    Kim R S, Cho K S, Lee J, Bong S C, Park Y D 2014 J. Geophys. Res-Space. 119 9419Google Scholar

    [33]

    乐贵明, 唐玉华, 韩延本 2007 科学通报 52 2461Google Scholar

    Le G M, Tang Y H, Han Y B 2007 Chin. Sci. Bull. 52 2461Google Scholar

    [34]

    Newkirk G Jr 1961 Astrophys. J. 133 983Google Scholar

    [35]

    Vršnak B, Magdalenić J, Zlobec P 2004 Astron. Astrophys. 413 753Google Scholar

    [36]

    Saito K, Poland A I, Munro R H 1977 Sol. Phys. 55 121Google Scholar

    [37]

    Gopalswamy N, S Yashiro 2011 Astrophys. J. 736 17Google Scholar

    [38]

    Mäkelä P, Gopalswamy N, Akiyama S, Xie H, Yashiro S 2015 Astrophys. J. 806 13Google Scholar

    [39]

    Kocharov L, Pohjolainen S, Mishev A, Reiner M J, Lee J, Laitinen T, Didkovsky L V, Pizzo V J, Kim R, Klassen A, Karlicky M, Cho K S, Gary D E, Usoskin I, Valtonen E, Vainio R 2017 Astrophys. J. 839 79Google Scholar

    [40]

    Temmer M, Vršnak B, Rollett T, Bein B, Koning D, Liu Y, Bosman E, Davies J A, Most C, Zic T, Veronig A M, Bothmer V, Harrison R, Nitta N, Bisi M, Flor O, Eastwood J, Odstrcil D, Forsyth R 2012 Astrophys. J. 749 57Google Scholar

    [41]

    Ding L G, Jiang Y, Zhao L L, Li G 2013 Astrophys. J. 763 30Google Scholar

    [42]

    Martínez Oliveros J C, Raftery C L, Bain H M, Liu Y, Krupar V, Bale S, Krucker S 2012 Astrophys. J. 748 66Google Scholar

    [43]

    周坤论, 丁留贯, 王智伟, 封莉 2019 物理学报 68 13Google Scholar

    Zhou K L, Ding L G, Wang Z W, Feng L 2019 Acta Phys. Sin. 68 13Google Scholar

    [44]

    Bemporad A, Mancuso S 2013 J. Adv. Res. 4 287Google Scholar

    [45]

    Sheeley Jr N R, Hakala W N, Wang Y M 2000 J. Geophys. Res. 105 5081Google Scholar

    [46]

    Vourlidas A, Wu S T, Wang A H, Subramanian P, Howard R A 2003 J. Adv. Res. 598 1392Google Scholar

    [47]

    Cho K S, Lee J, Moon Y J, Dryer M, Bong S C, Kim Y H, Park Y D 2007 Astron. Astrophys. 461 1121Google Scholar

    [48]

    Cho K S, Bong S C, Kim Y H, Moon Y J, Dryer M, Shanmugaraju A, Lee J, Park Y D 2008 Astron. Astrophys. 491 873Google Scholar

    [49]

    Feng S W, Chen Y, Kong X L, Li G, Song H Q, Feng X S, Ying Liu 2012 Astrophys. J. 753 21Google Scholar

  • [1] 严豪, 丁留贯, 封莉, 顾斌. 太阳高能粒子强度与日冕物质抛射及其II型射电暴的关系. 物理学报, 2024, 73(7): 079601. doi: 10.7498/aps.73.20231855
    [2] 白如雪, 郭红霞, 张鸿, 王迪, 张凤祁, 潘霄宇, 马武英, 胡嘉文, 刘益维, 杨业, 吕伟, 王忠明. 增强型Cascode结构氮化镓功率器件的高能质子辐射效应研究. 物理学报, 2023, 72(1): 012401. doi: 10.7498/aps.72.20221617
    [3] 刘玄玄, 国洪轩, 徐涛, 尹奎波, 孙立涛. 原位液相透射电子显微镜及其在纳米粒子表征方面的应用. 物理学报, 2021, 70(8): 086701. doi: 10.7498/aps.70.20201899
    [4] 张云峰, 贾焕玉, 王辉. 太阳宇宙线地面增强事件(GLE72)峰值能谱研究. 物理学报, 2021, 70(10): 109601. doi: 10.7498/aps.70.20201662
    [5] 范黎明, 包景东. 在破缺媒介中通过偏压增强粒子扩散. 物理学报, 2021, 70(19): 190502. doi: 10.7498/aps.70.20202063
    [6] 朱聪, 丁留贯, 周坤论, 钱天麒. II型射电暴分类及其与太阳高能粒子事件的关系. 物理学报, 2021, 70(9): 099601. doi: 10.7498/aps.70.20201800
    [7] 于韬, 杨栋宇, 马锐, 祝玉鹏, 史祎诗. 基于增强型视觉密码的光学信息隐藏系统. 物理学报, 2020, 69(14): 144202. doi: 10.7498/aps.69.20200496
    [8] 霍志胜, 蒲红斌, 李维勤. 高能透射电子束照射聚合物薄膜的带电效应. 物理学报, 2019, 68(23): 230201. doi: 10.7498/aps.68.20191112
    [9] 周坤论, 丁留贯, 王智伟, 封莉. 基于射电观测的日冕物质抛射驱动激波的统计特征研究. 物理学报, 2019, 68(13): 139601. doi: 10.7498/aps.68.20190223
    [10] 何应, 马欲飞, 佟瑶, 彭振芳, 于欣. 光纤倏逝波型石英增强光声光谱技术. 物理学报, 2018, 67(2): 020701. doi: 10.7498/aps.67.20171881
    [11] 赵泽宇, 刘晋侨, 李爱武, 牛立刚, 徐颖. 基于微腔-抗反射谐振杂化模式的吸收增强型有机太阳能电池的理论研究. 物理学报, 2016, 65(24): 248801. doi: 10.7498/aps.65.248801
    [12] 赵福泽, 朱绍珍, 冯小辉, 杨院生. 高能超声制备碳纳米管增强AZ91D复合材料的声场模拟. 物理学报, 2015, 64(14): 144302. doi: 10.7498/aps.64.144302
    [13] 丁东, 杨仕娥, 陈永生, 郜小勇, 谷锦华, 卢景霄. Al纳米颗粒增强微晶硅薄膜太阳电池光吸收的模拟研究. 物理学报, 2015, 64(24): 248801. doi: 10.7498/aps.64.248801
    [14] 李国龙, 何力军, 李进, 李学生, 梁森, 高忙忙, 袁海雯. 纳米银增强聚合物太阳能电池光吸收的研究. 物理学报, 2013, 62(19): 197202. doi: 10.7498/aps.62.197202
    [15] 刘研研, 董磊, 武红鹏, 郑华丹, 马维光, 张雷, 尹王保, 贾锁堂. 全光型石英增强光声光谱. 物理学报, 2013, 62(22): 220701. doi: 10.7498/aps.62.220701
    [16] 李国龙, 李进. 微纳光栅结构增强聚合物太阳能电池光吸收的研究. 物理学报, 2012, 61(20): 207204. doi: 10.7498/aps.61.207204
    [17] 欧阳建明, 马燕云, 邵福球, 邹德滨. 高能电子碰撞电离对高空核爆炸辐射电离的影响. 物理学报, 2012, 61(21): 212802. doi: 10.7498/aps.61.212802
    [18] 朱佩平, 袁清习, 黄万霞, 王寯越, 舒 航, 吴自玉, 冼鼎昌. 衍射增强成像原理. 物理学报, 2006, 55(3): 1089-1098. doi: 10.7498/aps.55.1089
    [19] 朱亚波, 王万录, 廖克俊. 对碳纳米管阵列的场发射电场增强因子以及最佳阵列密度的研究. 物理学报, 2002, 51(10): 2335-2339. doi: 10.7498/aps.51.2335
    [20] 许北雪, 吴锦雷, 刘惟敏, 杨海, 邵庆益, 刘盛, 薛增泉, 吴全德. 稀土对金属纳米粒子-介质复合薄膜(Ag-BaO)光电发射性能的增强. 物理学报, 2001, 50(5): 977-980. doi: 10.7498/aps.50.977
计量
  • 文章访问数:  6466
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-07
  • 修回日期:  2020-05-08
  • 上网日期:  2020-05-25
  • 刊出日期:  2020-08-20

/

返回文章
返回